图像分割篇-FCN论文精读

第一部分:论文部分

共提炼出三个创新点:

·对经典网络改编-卷积替换全连接

·对前向特征图补偿-跳跃连接

·对特征图尺寸恢复-反卷积

1、CNN与FCN的比较

CNN 在传统的CNN网络中,在最后的卷积层之后会连接上若干个全连接层,将卷积层产生的特征图(feature map)映射成为一个固定长度的特征向量。一般的CNN结构适用于图像级别的分类和回归任务,因为它们最后都期望得到输入图像的分类的概率,如ALexNet网络最后输出一个1000维的向量表示输入图像属于每一类的概率.

FCN FCN是对图像进行像素级的分类(也就是每个像素点都进行分类),从而解决了语义级别的图像分割问题。与经典CNN在卷积层使用全连接层得到固定长度的特征向量进行分类不同,FCN可以接受任意尺寸的输入图像,采用反卷积层对最后一个卷基层的特征图(feature map)进行上采样,使它恢复到输入图像相同的尺寸,从而可以对每一个像素都产生一个预测,同时保留了原始输入图像中的空间信息,上采样的特征图进行像素的分类。

可以看出,FCN在CNN的基础上将全连接层转换为卷积层可以使分类网输出热图。添加层和空间损失产生了端到端密集学习的高效机器。

2、跳跃连接

将在卷积的前几层提取到的特征图分别和后面的上采样层相连,然后再相加继续网上往上上采样,上采样多次之后就可以得到和原图大小一致的特征图了,这样可以在还原图像的时候能够得到更多原图所拥有的信息。对第5层的输出执行32倍的反卷积得到原图,得到的结果不是很精确,论文中同时执行了第4层和第3层输出的反卷积操作(分别需要16倍和8倍的上采样),再把这3个反卷积的结果图像融合,提升了结果的精确度。

使用跃层结构融合多层输出,使得网络能够预测更多的位置信息。因为在浅层网络位置信息等保留的比较好,将他们加入到深层输出中,就可以预测到更精细的信息。

 3、上采样-反卷积

卷积操作的逆运算,反卷积并不能复原因卷积操作造成的值的损失,它仅仅将卷积过程中的步骤反向变换一次,因此它还可以被成为转置卷积。

 反卷积和普通卷积的区别:

普通的卷积操作,会使得分辨率降低,如下图3*3的卷积核去卷积4*4得到2*2的输出

反卷积,首先对特征图各神经元之间进行0填充,即上池化;然后再进行卷积运算

 

### 关于 R-FCN 的相关论文 R-FCN(Region-based Fully Convolutional Network)是一种用于目标检测的深度学习框架,最初在 NIPS 2016 上被描述并发布了一重要论文[^1]。这论文由 Jifeng Dai、Yi Li、Kaiming He 和 Jian Sun 联合撰写,隶属于微软亚洲研究院视觉计算组[^2]。 #### 论文基本信息 - **标题**: R-FCN: Object Detection via Region-based Fully Convolutional Networks - **作者**: Jifeng Dai, Yi Li, Kaiming He, Jian Sun - **发表会议**: NIPS 2016 该论文提出了基于区域的目标检测新方法——R-FCN,通过完全卷积网络实现高效的目标检测任务。相比传统的 Faster R-CNN 方法,R-FCN 更加注重模型的速度和效率优化,在保持高精度的同时显著降低了推理时间[^5]。 #### 主要贡献 R-FCN 的核心创新在于引入了位置敏感得分图的概念,并利用这些得分图完成最终的分类与回归任务。具体来说,R-FCN 使用了一个全卷积结构来生成固定大小的空间特征映射,随后通过对感兴趣区域(RoI)执行桶平均池化操作,从而获得更精确的位置感知信息。 如果希望深入研究这一主题,可以访问原始论文链接或者查阅 GitHub 社区中的开源项目资源。例如,在实际应用过程中可能会遇到一些技术难题,比如训练 end2end_OHEM 版本时 loss_bbox 始终为零的情况,这通常可以通过调整 numpy 库版本等方式加以解决[^3]。 ```python import numpy as np # 示例代码展示如何验证 NumPy 是否存在问题 def check_numpy_version(): version = np.__version__ if tuple(map(int, version.split('.'))) < (1, 10, 4): raise ImportError("Your NumPy version is too old. Please upgrade to at least v1.10.4.") check_numpy_version() print(f"Numpy Version Checked: {np.__version__}") ``` 上述脚本可以帮助开发者确认当前环境中使用的 NumPy 版本是否满足最低需求。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值