最近在学习机器学习,同时产生了一些对于 C++ 和 python 的看法~
如果你是一位 C++ 开发者,最近在接触 python 的话,很可能产生类似的想法~
这正是 Python 的哲学魅力所在。这种差异主要源自两种语言的设计理念和应用场景:
- 抽象层级差异
- Python 作为高级语言,内置了大量语法糖和现成库(如 requests, numpy)
- 像
json.loads()
这种看似简单的函数,底层其实是用 C 实现的解析器 - 标准库中的
collections
模块用 100 行 Python 就能实现 C++ 需要上千行的数据结构
- 开发效率 vs 执行效率
# 用 3 行 Python 实现 HTTP 服务
from http.server import SimpleHTTPRequestHandler, HTTPServer
server = HTTPServer(('', 8000), SimpleHTTPRequestHandler)
server.serve_forever()
类似功能用 C++ 需要处理套接字、线程、协议解析等底层细节
- 胶水语言特性
- 可以用 ctypes 直接调用 C/C++ 编译的动态库
from ctypes import CDLL
libc = CDLL("libc.so.6") # 直接调用 C 标准库
print(libc.time(None))
- 性能取舍方案
- 当 Python 性能不足时,可以通过以下方式优化:
- 使用 Cython 编写性能关键代码
- 用 numba 进行 JIT 编译加速
- 对计算密集型任务使用 numpy 的向量化操作
当代开发常见模式是:Python 作为顶层胶水,调用底层 C/C++/Rust 实现的核心模块。既保持了开发效率,又兼顾了执行性能。像 TensorFlow/PyTorch 等框架正是这种架构的典范。