【数据科学笔记】闵可夫斯基距离(Minkowski Distance):全面指南

距离度量是数据科学和机器学习算法的基石,它们使得我们能够测量数据点之间的相似性或差异性。本文将深入探讨闵可夫斯基距离的基础、数学特性及其在不同领域的应用。我们将了解它与其他常见距离度量的关系,并通过Python和R的编程实例展示其用法。

无论是开发聚类算法、处理异常检测,还是优化分类模型,理解闵可夫斯基距离都能增强您的数据分析和模型开发方法。

什么是闵可夫斯基距离?

闵可夫斯基距离是在赋范向量空间中使用的一种灵活的距离度量,以德国数学家Hermann 闵可夫斯基的名字命名。它是几种广为人知的距离度量的泛化形式,因此在数学、计算机科学和数据分析等多个领域中占据着核心地位。
在这里插入图片描述

闵可夫斯基距离的核心在于它提供了一种在多维空间中测量两点间距离的方法。它的特别之处在于,通过一个参数p,可以适应不同的问题空间和数据特征。
闵可夫斯基距离的一般公式如下:

[D(x,y)=(∑i=1n∣xi−yi∣p)1/p][ D(x, y) = \left( \sum_{i=1}{n} |x_i - y_i|p \right)^{1/p} ][D(x,y)=(i=1nxiyip)1/p]

其中:

(x)和(y)是n维空间中的两个点( x ) 和 ( y ) 是n维空间中的两个点(x)(y)n维空间中的两个点

(p)是一个确定距离类型的参数((p≥1))( p ) 是一个确定距离类型的参数(( p \geq 1 ))(p)是一个确定距离类型的参数((p1)

(∣xi−yi∣)表示x和y在每个维度上的坐标绝对差异( |x_i - y_i| ) 表示x和y在每个维度上的坐标绝对差异(xiyi)表示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李威威wiwi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值