一、基于深度学习与几何融合的方法
-
CityGaussianV2(ICLR 2025)
- 方法:采用2D Gaussian Splatting(2DGS)作为基元,结合深度回归监督和梯度解耦策略,解决大规模场景下的收敛不稳定和显存爆炸问题。通过子模型划分与并行训练优化,实现1.97平方公里区域的高效重建。
- 数据:Tanks and Temples (TnT) 数据集、自建大规模城市街景数据。
- 开源:代码已开源,地址:GitHub。
- 精度:在TnT数据集上,几何精度(P/R/F1)显著优于SuGaR、GOF等方法,渲染质量与CityGaussianV1相当。
- 优势:端到端训练与压缩一体化,显存开销降低50%,训练时间减少25%。
-
GraphGS(ICLR 2025)
- 方法