【深度学习新浪潮】近三年高精度大规模三维实景重建研究进展(2022-2025)

在这里插入图片描述

一、基于深度学习与几何融合的方法
  1. CityGaussianV2(ICLR 2025)

    • 方法:采用2D Gaussian Splatting(2DGS)作为基元,结合深度回归监督和梯度解耦策略,解决大规模场景下的收敛不稳定和显存爆炸问题。通过子模型划分与并行训练优化,实现1.97平方公里区域的高效重建。
    • 数据:Tanks and Temples (TnT) 数据集、自建大规模城市街景数据。
    • 开源:代码已开源,地址:GitHub
    • 精度:在TnT数据集上,几何精度(P/R/F1)显著优于SuGaR、GOF等方法,渲染质量与CityGaussianV1相当。
    • 优势:端到端训练与压缩一体化,显存开销降低50%,训练时间减少25%。
  2. GraphGS(ICLR 2025)

    • 方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能守恒_HengAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值