【深度学习新浪潮】近三年3DGS在大规模场景重建中的研究进展(2022-2025)

在这里插入图片描述

一、核心方法与技术突破
  1. 层次化3DGS与分治策略

    • Hierarchical 3DGS(2025,法国国家信息与自动化研究所)

      • 方法:提出层次化3DGS框架,结合分治策略与细节层次(LOD)技术,将数公里级场景划分为独立区块并行训练,通过高斯合并构建层级结构,支持实时渲染与动态LOD切换。
      • 数据:Wayve自动驾驶数据集(含450米至数公里轨迹)、自采城市街景数据(5800-28000张图像)。
      • 开源:未明确开源,但与CityGaussian系列技术路线高度关联(CityGaussian V2已开源)。
      • 性能:在450米轨迹数据上实现实时导航,显存占用降低60%,渲染速度提升3倍。
    • CityGaussian系列(2024-2025,清华大学/ETH Zurich)

      • 方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能守恒_HengAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值