- 博客(78)
- 资源 (1)
- 收藏
- 关注

原创 ‘Tensor‘ object has no attribute ‘numpy‘处理方法
在实现多层感知机的时候import tensorflow as tfimport numpy as np#实现一个简单的DataLoader类来读取MNIST数据集数据class DataLoader(): def __init__(self): mnist = tf.contrib.learn.datasets.load_dataset("mnist") ...
2020-03-31 20:43:39
38602
31
原创 模考06卷一
1.咱们用大白话说说这个题:核心是讲,公安机关决定不立案时,谁有权利 “讨说法”,怎么讨。先看选项 A:张某是举报人,不是直接被侵害的人(被害人)。法律规定,只有被害人不服不立案,才能找公安申请重新考虑(复议),举报人没这权利。所以 A 错。选项 B:还是张某,他作为举报人,连找检察院反映情况(申诉)的资格都没有。退一步说,就算检察院觉得公安该立案,也不能直接让公安立案,得先让公安说明为啥不立案,理由站不住脚了,才会通知立案。所以 B 错。选项 C:县市场监管局是行政执法机关,他们把案件移交给公安,
2025-08-12 09:04:37
760
原创 模考50题卷一 05
再比如,办理护照时,只要申请人符合法定条件(比如身份合法、材料齐全),行政机关就必须发护照,不能以 “看着不顺眼” 为由拒绝,这也是羁束行为 —— 因为法律已经把 “必须发” 的条件写死了,没给行政机关自由裁量的余地。选项 B:有个特殊情况,比如开车撞了人,单位领导、车主、包车的人,甚至坐车的人,要是怂恿肇事者逃跑,结果被害人因为没人救死了,这些怂恿的人也算 “交通肇事罪” 的共犯,得一起担责任。这是法律专门规定的,所以 B 说的情况是对的,但题目问的是正确选项,咱继续看。这是对的,所以 C 没问题。
2025-08-11 10:12:05
811
原创 0基础04试卷2的30题总结
所以法院不能把家佳公司拉进来一起审到底,而是得先结束这个公示催告程序,让有争议的双方自己去打官司解决,所以 B 说 “追加审理” 是错的,C 说 “终结程序” 才对。按规定,就算存在信用证欺诈,但如果开证行或者相关机构已经 “好心好意” 地付了钱、承兑了(也就是无辜的一方已经正常操作了),那法院就不能再插手让停止支付了 —— 总不能坑那些不知情的好人吧,这就是 “善意” 的关键。首先,乙公司花了 15 万块给甲做专门的培训,这种情况下,公司和甲约定 “甲得在公司干满几年(服务期)” 是合法的。
2025-08-10 17:13:57
911
原创 法考模考03卷一50道单选
D 对:附带民事诉讼的当事人(比如要求赔偿的吴某)和他们的法定代理人,对一审判决里关于 “附带民事部分”(比如赔偿金额、方式)不服,可以自己直接上诉,这部分有独立上诉权,所以 D 正确。D 错:如果多个被告人被判死刑,最高院复核后,对其中一些改判死缓时,符合条件可以加限制减刑,但正确做法是:对量刑错的改判,没犯错的就核准死刑。的范围内,不管复议被申请人是区教育局之类的所属部门,还是乡政府之类的下级政府,还是派出所这样的区政府或区公安局设立的派出机构,复议机关均适用“地方事务归政府”的逻辑,
2025-08-09 09:06:55
870
原创 0基础法考刷题02(随机组卷30道单选)
D 说的就是复议前置(自然资源类、涉税类、反垄断的限制集中和禁止集中:美团把所有的外卖平台都买了)以及23年新增的:当场处罚、信息公开、不作为案件。B项,盗伐林木罪的成立要求盗伐的林木数量较大,就此而言,该罪属于(实害)结果犯。是指,无证擅自采伐,或者有证但是不按照许可证的规定而滥伐林木,而且该罪的成立要求滥伐的。成立教唆犯,要求故意教唆,因此,教唆犯作为一种犯罪角色,只能是故意犯,而非过失犯。A 宪法规范,是组成宪法条文的具体内容,调整的是国家和公民间的基本关系。B 甲只是用酒防御,没有反击,所以不算。
2025-08-08 09:33:13
402
原创 0基础法考 单选50条错题总结
A 行政复议机关可以对行政行为的合法性以及适当性(合理性)进行审查,与行政诉讼只能审查行政行为的合法性是不同的,在行政复议中,是上级机关审查下级行政机关的行为,上级行政机关干涉下级行为的权力本身就较大,而且也具有相应的行政经验,因此可以进行合理性的审查,但是,法院是外部主体,只能审查合法性的“大毛病”,不能审查合理性的“小毛病”。领馆是 “地方级” 的,设在对方的大城市(比如美国的纽约、中国的上海),管 “具体小事”:比如帮自己国家的人补办护照、处理在当地的纠纷,或者促进两地的生意、文化交流。
2025-08-07 22:50:51
760
原创 0基础法考04(专题1 立案+ 专题2 侦察)
起诉部门发现:王五的 “贪污款” 其实是合法奖金→ 起诉部门不能直接不起诉,必须把案子退给本院侦查部门,建议 “撤销案件”(因为王五没犯罪)。只能建议 “重新侦查 / 调查”,不能建议 “撤销案件”(因为案件是真实的,只是抓错人了,得继续查)。但是不能去指定地点。,并让移送机关移送给有管辖权的机关(比如公安移了监委的案,检察院退回公安,让公安移交给监委)。一、场景 1:公安 / 监委移送的案件(“抓错人了,退回去重新查”)----->的案件(“自己查的案,发现错了,退回去撤案”)----->
2025-07-30 15:21:51
265
原创 0基础法考随手笔记 03(刑诉05 刑事证据与证明+06 强制措施)
传来 + 直接:证人李四说 “我听王五说看到张三杀人”(传来证据)→ 若王五的证言能直接证明 “张三杀人”,则李四的转述属于 “传来 + 直接证据”。间接:需与其他证据结合,才能证明案件主要事实的证据(需推理)(现场指纹、血迹、作案工具(需结合其他证据推断 “谁是凶手”))直接:能单独、直接证明案件主要事实的证据(无需推理)(被告人认罪供述、目击证人指认凶手的证言、监控完整记录犯罪过程)原始:直接来源于案件事实,未经复制、转述的 “第一手材料”(现场凶器、合同原件、目击证人的当庭证言)证据清单是否为证据?
2025-07-26 23:54:07
231
原创 0基础法考随手笔记 02(刑诉法专题04 辩护与代理)
这时候,法院会判 “强制医疗”,把张三送到精神病院治疗,直到医生评估 “他不会再伤人了”,才能申请出院。总结:强制医疗是法律对 “危险精神病人” 的特殊管理手段—— 既帮他治病,又防他害社会,是 “治病” 和 “维稳” 的平衡。治疗到 “没危险” 为止:医院定期评估,如果病人病情好转,不再伤人,可以申请解除强制医疗;法院开庭审理:控辩双方(比如检察院和精神病人的代理人)辩论,法官决定是否 “强制医疗”。→ 不是 “惩罚”(因为精神病人不负刑事责任),而是 “治疗 + 保护”。三、谁来决定 “强制医疗”?
2025-07-23 20:02:07
188
原创 决战100题—day1
持续开展市级领导包联重点企业及市直机关“进企业、解困难、促发展”活动,深入推行领导和部门包联服务企业制度,问需于企、问计于企、解困于企。随着疫情防控形势发生积极变化,荆门市委、市政府要求,以更大力度抓复工复产,解决企业在用工、用能、资金、流通等方面的实际困难,强力推动企业复产达产满产。因疫情突袭,钟祥市实行交通管制,眼看企业就要陷入停产困境,农行钟祥支行成立应急服务小分队,按照“特事特办、从快从简”原则,实行远程办公,及时发放客户急需资金。开展各类活动,推行领导和部门包联服务企业制度,安排专人协调服务。
2025-01-04 00:10:29
368
3
原创 字符串数组查找最长字符串
i = 0#指针从头开始遍历maxlen = 0#记录最长字符串长度 while i<len(l): if len(l[i])>maxlen: maxlen = len(l[i])#记录当前最长字符串长度 k = i #k用于记录当前最长字符串的位置 i = i+1#指针后移 print(k)#返回最长字符串长度 print(l[k])#返回最长字符串...
2021-10-02 09:54:42
2826
原创 collections.deque双边队列
队列是一种只允许在一端插入在另一端删除的线性表。collections.dequedeque是双端队列(double ended queue)的缩写,由于两端都能编辑,deque既可以用来实现栈(stack)也可以用来实现队列(queue)。pop()从右侧弹出数字popleft()从左侧弹出数字...
2021-05-29 08:28:18
328
原创 python创建二维数组方法
dp = [[0]*l for _ in range(l)]和dp = [[0] * len(s)] * len(s)推荐第一种第二种方法下这么生成的二维数组 里面每一行的内存地址都一样 改一个dp[0][0]所有的dp[x][0]都生效了
2021-05-11 15:55:36
619
原创 python中 b = c and c == 3是什么意思
c = 2b =100b = c and c == 3print(b)输出结果False而c = 2b = 2b = c and c == 3print(b)False而c = 2b = 2000b = c and c == 2print(b)True可以看出 b = c and c == 3的功能是如果and后面的c==3成立返回True 不成立就返回False,和前面的b=c无关...
2021-03-18 09:57:59
511
原创 写类时遇到:missing 1 required positional argument: XXX
初写代码 写如下代码会出现错误:class Solution: def myPow(self,x: float, n: int) -> float: return x,nb = Solutionprint(b.myPow(1,2))Traceback (most recent call last): File "F:/pydaima1/leetcode/leetcode16.py", line 27, in <module> print(b.m
2021-03-16 19:35:26
1635
原创 使用skimage.transform.resize的一些东西
集群的opencv不能使用 只能去学习使用skimage,其实大体是差不多的,读取后都是numpy格式很方便,这里说说不一样的。主要在resize方面,cv2.resize就是单纯调整尺寸,而skimage.transform.resize会顺便把图片的像素归一化缩放到(0,1)区间内,看到skimage.transform.resize的源码def resize(image, output_shape, order=1, mode='reflect', cval=0, clip=True,
2021-01-11 16:59:30
7805
1
原创 pycharm远程遇到的No files or folders found to process
No files or folders found to process打开pycharm–>Tools–>Deployment–>Configuration,如下图所示然后把已存在的(你之前配置过的)都删去(点哪个减号),然后新建一个连接(点加号),就可以解决。...
2021-01-10 20:27:46
8837
4
原创 .data.max和torch.max的笔记
.data.max用于找概率最大的下标c = torch.tensor([[1,2,3],[4,5,6]])print(c)d = c.data.max(1,keepdim=True)[1] print(d)输出:tensor([[1, 2, 3], [4, 5, 6]])tensor([[2], [2]])c.data.max(1,keepdim=True)[1]中的第一个1表示,按照行来找,找每行的最大值;最后[1]表示,c.data.max(1,ke
2020-12-19 20:43:45
3447
1
原创 torch.item()的用法
理解为把tensor量变成常数每次从矩阵中取一个import torchx = torch.arange(1,4).view(2,2)print(x[1,1])print(x[1,1].item())输出tensor(4.)4.0
2020-12-17 19:57:47
782
原创 torch中的tensor操作
1.关于tensor的一些判断torch.is_tensor(obj)torch.is_storage(obj)torch.set_default_dtype(d) #默认的type为torch.float32torch.get_default_dtype() → torch.dtype #(→返回值,下同)torch.set_default_tensor_type(t)torch.numel(input) → int #返回tensor中所有的元素个数torch.set_printop
2020-12-17 16:44:35
1797
原创 python中.mul()和.mul_(),.exp()和.exp_()区别
所有带"——"都是inplace的 意思就是操作后 原数也会改动不带 "——" 的 只在操作适时候改变数据,操作结束后数据变回原状
2020-12-10 21:39:22
7426
原创 model.vgg16.feature[:-1]的意思
用于记录:pretrained_model = models.vgg16(True).features[:-1]print(pretrained_model)就是把vgg16最后一层不要了pretrained_model = models.vgg16(True).featuresprint(pretrained_model)torch保存的模型和参数按照字典方式保存。...
2020-12-10 19:04:25
3655
2
原创 python中的view用法
import torcha = torch.range(1,30)print(a)b = a.view(2,3,5)print(b)print(b.view(b.size(0),-1))print(b.view(b.size(1),-1))print(b.view(b.size(2),-1))获得:a:tensor([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16.
2020-12-09 14:43:17
7145
1
原创 pytorch中nn.Embedding理解
给输入的词创建词向量import numpy as npimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch.autograd import Variableword={'hello':0,'world':1}print(word)embeds = nn.Embedding(2, 6)hello_idx = torch.LongTensor([word['hello']])hello_idx
2020-11-28 08:47:04
649
1
原创 torch.cat的简单初步理解
用于自己笔记用import torcha = torch.Tensor([[1,2],[3,4]])b = torch.Tensor([[5,6],[7,8]])print(a.shape)c = torch.cat((a,b),axis = -1)print(c)输出:torch.Size([2, 2])tensor([[1., 2., 5., 6.], [3., 4., 7., 8.]])按照纵轴操作,两个二行二列的行成一个二行四列的import torcha
2020-11-24 17:48:46
421
原创 python中的.sum(axis=*)的解释
关于.sum(axis=)的解释axis = 0的代码:import torchc = torch.Tensor([[[1,2],[3,4]],[[11,12],[13,14]]])print(c.shape)print(c.sum(axis=0))输出:torch.Size([2, 2, 2])tensor([[12., 14.], [16., 18.]])设计一个2X2X2的Tensor,axis=0求和就是各个矩阵对应的位置求和axis = 1的代码:c =
2020-11-21 09:26:47
1262
1
原创 torch.enisum爱因斯坦求和
初次学习用于记录1.转置Bij = Aijimport torchimport tsensorh = torch.Tensor([[1,2],[3,4]])with tsensor.clarify(): h = torch.einsum('ij->ji',h) print(h)输出:tensor([[1., 3.], [2., 4.]])2.全部元素求和h = torch.Tensor([[1,2],[3,4]])with tsensor.clarify():
2020-11-20 21:38:02
703
原创 对于视频异常检测的形式化定义
帧级别视频异常检测问题可以定义为:输入一个视频序列 V , 由 T 张连续帧组成 I1 I2 I3…It,每张视频帧 It 都带有一个二分类的标签 yt,它表示第 t 帧内容是否发生异常( yt =0 正常 yt = 1异常)。
2020-11-16 20:39:48
211
原创 图像语义的理解
语义图像分割的目标在于标记图片中每一个像素,并将每一个像素与其表示的类别对应起来。任务表征我们的目标是要用RGB图(height X weight X 3)或灰度图(height X weight X 1)为输入,并输出一个分割图,在分割图中每个像素都包括一个用整数表示的类别标签(height X weight X 1)。分割成1: Person2: Purse3: Plants/Grass4: Sidewalk5: Buildings/Structures通过onehot编
2020-11-10 16:22:16
2522
原创 torch.nn.functional.normalize的理解
原函数应该是这样:def normalize(input, p=2, dim=1, eps=1e-12, out=None): # type: (Tensor, float, int, float, Optional[Tensor]) -> Tensor r"""Performs :math:`L_p` normalization of inputs over specified dimension. For a tensor :attr:`input` of sizes :
2020-10-31 08:24:33
1230
原创 python cv2打开修改保存图片的坑
先上正确的代码:"""利用cv2对图片进行尺寸调整"""import cv2import numpy as npimg = cv2.imread("./131.jpg")cv2.imshow("2",img)img = cv2.resize(img,(227,227))cv2.imshow("1",img)path = "./avenue/1.jpg"cv2.imwrite(path,img)cv2.imread没啥好说的 打开路径下的图片imshow用于展示,但是得在最后
2020-10-10 09:32:02
327
1
原创 latex并排插图片模板
第一次用latex写论文,插入多张图片需要先在开头导入包,我这里选择的是:\documentclass{SCIS2020cn1}%\usepackage{subfig}\usepackage{graphics}\usepackage{subfigure}当然,导入 graphics和subfigure需要自己去下载,连接:latex宏包,进去之后根据首字母提示去找,然后download,然后解压,解压的文件夹就和自己的latex文件放在一起,名字一定要和自己导入的对应。然后就是插入图片的代码。
2020-10-09 18:09:52
325
原创 tensorflow图像数据预处理keras版本
这里用cifer2作为数据集(airplane和automobile)训练集各有5000张,测试集各有1000张数据增强利用keras中的图片数据预处理工具ImageDataGenerator我们可以对图片数据进行旋转翻转缩放等数据增强
2020-05-12 11:13:53
592
原创 No module named png 解决方案
直接上图用命令:pip install pypng我之前试过pip install png不知道是我自己的问题还是大家都报错
2020-05-04 20:06:50
2520
1
原创 把视频转换成图片帧的代码
环境:windows 7 +opencv+cpu+py3.6'''视频转帧'''import cv2def video2frame(videos_path,frames_save_path,time_interval): ''' :param videos_path:视频的存放路径 :param frames_save_path:视频切分成帧之后的保存路径 ...
2020-04-18 22:49:38
1477
原创 SENet,ResNet自学
已经有很多工作在空间维度上来提升网络的性能。那么很自然想到,网络是否可以从其他层面来考虑去提升性能,比如考虑特征通道之间的关系?我们的工作就是基于这一点并提出了 Squeeze-and-Excitation Networks(简称 SENet)。在我们提出的结构中,Squeeze 和 Excitation 是两个非常关键的操作,所以我们以此来命名。我们的动机是希望显式地建模特征通道之间的相互依赖关...
2020-04-18 17:24:21
1318
latex的cvpr中文模板 很好用
2020-10-18
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人