# 使用Pinecone和OpenAI进行RAG的强大组合:如何快速入门
在本文中,我们将探讨如何利用Pinecone和OpenAI进行检索增强生成(RAG),并提供清晰的代码示例,帮助你快速上手。
## 引言
检索增强生成(RAG)是将信息检索与生成式AI模型结合的技术,可以有效地提高生成内容的准确性。在本文中,我们将详细介绍如何使用Pinecone作为向量库,并与OpenAI的模型结合,实现RAG。
## 主要内容
### 环境设置
要使用Pinecone作为向量库,您需要设置以下环境变量:
- `PINECONE_API_KEY`
- `PINECONE_ENVIRONMENT`
- `PINECONE_INDEX`
同时,确保设置`OPENAI_API_KEY`以访问OpenAI模型。
安装LangChain CLI:
```bash
pip install -U langchain-cli
项目创建与配置
创建新项目
使用以下命令创建LangChain项目,并安装rag-pinecone
包:
langchain app new my-app --package rag-pinecone
添加到现有项目
在现有项目中添加rag-pinecone
:
langchain app add rag-pinecone
并在server.py
中添加如下代码: