用skimage学习数字图像处理(000):引言

本文回顾了作者从硕士时期开始的DIP算法开发旅程,介绍了C语言、Matlab和Python在DIP领域的应用,重点阐述了选择skimage而非OpenCV的原因,强调了Python的易用性、扩展性和与科研需求的契合度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

0.1 我的DIPer开始之旅

0.2  DIP开发语言之我所见

 (1)C语言

 (2)Matlab

 (3)Python

0.3 为什么是skimage?

(1)PIL和Pillow

(2)OpenCV v.s. scikit-image


0.1 我的DIPer开始之旅

    在此,我用DIPer表示从事DIP算法开发的人员,不知道是不是第一次使用。我从1999年读硕士时开始接触图像处理技术的,现在算来,居然有25年了。当时最直接的原因是我硕导的研究方向是图像处理。在研一下学期有一门专业课,名称就是《数字图像处理》,用的是一本薄薄的教材,印刷质量一般,相对于后来经典的 Gonzalez系列DIP教材相比,内容明显单薄,但我们仍然学的很起劲。现在想来,原因主要有两个,一是有用,二是有趣。说“有用”是因为课题组的老师和师兄都是搞DIP的,干课题、写论文都要用到。说“有趣”是相对于当时落后的软硬件条件,记得当时能在屏幕上用C语言程序调用putpixel命令,逐行扫屏显示一幅256灰度级的lena图,那种成就感至今难忘。

做DIP的都认识的Miss Lena

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值