002-基于Sklearn的机器学习入门:基本概念

本节将继续介绍与机器学习有关的一些基本概念,包括机器学习的分类,性能指标等。同样,如果你对本节内容很熟悉,可直接跳过。

2.1 机器学习概述

2.1.1 什么是机器学习

常见的监督学习方法

2.1.2 机器学习的分类

机器学习一般包括监督学习,无监督学习,强化学习,半监督学习和主动学习,接下来,我们主要针对每一种学习方法进行解释。

  • 监督学习:简单的来说,监督学习,就是我们人为的给我们的数据集添加一个标注,使得我们的机器学习模型可以借助外力从我们的数据中去学习。标注数据表示我们的输入与输出的对应关系,我们建立的模型,对给定的新数据集,产生相应的输出,监督学习的本质就是学习输入到输出的映射规律。
  • 无监督学习:无监督学习是指从无标注的数据集中进行学习预测的机器学习,它和监督学习刚好相反,监督学习需要我们人为的添加标注,而无监督学习不需要我们人为的添加标注,模型会自动从给定的数据集中学习
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值