- 博客(50)
- 收藏
- 关注
原创 【AI深究】随机梯度提升(Stochastic GBM)深度解析:原理、算法与工程实践——全网最详细全流程详解与案例(附Python代码演示)|集成方法核心原理、算法细节、数学表达、工程实现与实际意义
大家好,我是爱酱。本篇延续我上五篇Boosting (XGBoost, LightGBM, AdaBoost, CatBoost, GBM),继续去讲解随机梯度提升:StochasticGBM 的核心原理、算法细节、数学表达、优缺点、工程实现与实际意义,帮助你全面理解这一经典Boosting算法的本质与应用。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-07-03 03:00:00
178
原创 【AI深究】GBM(Gradient Boosting Machine)深度解析:原理、算法与工程实践——全网最详细全流程详解与案例(附详尽Python代码演示)| 集成方法核心原理、算法细节数学表达
大家好,我是爱酱。本篇延续我上三篇Boosting (XGBoost, LightGBM, AdaBoost, CatBoost),继续去讲解GBM(全称Gradient Boosting Machine)的核心原理、算法细节、数学表达、优缺点、工程实现与实际意义,帮助你全面理解这一经典Boosting算法的本质与应用。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-07-03 02:15:00
214
原创 【AI深究】CatBoost深度解析:原理、算法与工程实践——全网最详细全流程详解与案例(附Python代码演示)|集成学习算法细节、数学表达、与其他Boosting算法比较|参调技巧与代码示例可视化
大家好,我是爱酱。本篇延续我上三篇Boosting (XGBoost, LightGBM, AdaBoost),继续去讲解CatBoost(Categorical Boosting)的核心原理、算法细节、数学表达、优缺点、工程实现与实际意义,帮助你全面理解这一经典Boosting算法的本质与应用。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-07-02 18:36:44
391
原创 【AI深究】AdaBoost深度解析:原理、算法与工程实践——全网最详细全流程详解与案例(附Python代码演示)|集成学习算法细节、数学表达、与其他Boosting算法比较|参调技巧与代码示例可视化
大家好,我是爱酱。本篇延续我上两篇Boosting (XGBoost, LightGBM),继续去讲解AdaBoost(Adaptive Boosting)的核心原理、算法细节、数学表达、优缺点、工程实现与实际意义,帮助你全面理解这一经典Boosting算法的本质与应用。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-07-02 18:17:51
675
原创 【AI深究】LightGBM深度解析:原理、算法与工程实践——全网最详细全流程详解与案例(附详尽Python代码演示)|集成方法核心原理、算法细节数学表达、工程实现与实际意义|参调技巧与代码示例可视化
大家好,我是爱酱。本篇延续爱酱上一篇XGBoost的深究专栏,系统的梳理LightGBM(Light Gradient Boosting Machine)的核心原理、算法细节、数学表达、工程实现与实际意义,帮助你全面理解这一高效、强大的Boosting算法。 注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-07-01 00:19:12
589
原创 【AI深究】XGBoost深度解析:原理、算法与工程实践——全网最详细全流程详解与案例(附详尽Python代码演示)|集成方法核心原理、算法细节、数学表达、工程实现与实际意义|参调技巧与代码示例可视化
大家好,我是爱酱。本篇将会系统梳理XGBoost(eXtreme Gradient Boosting)的核心原理、算法细节、数学表达、工程实现与实际意义,帮助你全面理解这一机器学习领域“常胜将军”的本质。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-07-01 00:15:00
820
原创 【AI概念】AutoML、迁移学习(Transfer Learning)、元学习(Meta Learning)详解(附Python代码演示)| 本质区别、联系、代表性架构和应用场景、工程选择建议
大家好,我是爱酱。本篇将会系统讲解AutoML、迁移学习(Transfer Learning)、元学习(Meta Learning)三大新兴AI概念的原理、数学表达和实际意义,内容详实、结构清晰,适合AI基础与进阶读者。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-30 04:31:40
561
原创 【AI概念】大语言模型(LLM)vs. 传统NLP模型详解(附Python代码演示)| 本质区别、联系、代表性架构和应用场景、工程选择建议、未来趋势
大家好,我是爱酱。本篇将会系统梳理大语言模型(Large Language Model, LLM)、Transformer/BERT/GPT与传统NLP(Natural Language Processing)模型的本质区别、联系、代表性架构和应用场景,帮助你系统理解NLP领域的范式变迁。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-30 03:47:10
1448
原创 【AI概念】生成式AI(GenAI)vs 判别式AI(Discriminative AI)详解(附详尽Python代码演示)|定义、核心原理、数学表达、工程应用建议|GAN、Diffusion、VAE
大家好,我是爱酱。本篇将会系统梳理生成式AI(Generative AI)与判别式AI(Discriminative AI)的核心原理、数学表达、典型模型(如GAN、Diffusion、VAE等)、适用场景、优缺点和工程应用建议,帮助你系统理解两大AI范式的本质区别与联系。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。本文章颇长超过8000字长、以及大量详细、完整的Python代码、非常耗时制作,因此,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-29 19:11:32
747
原创 【AI概念】泛化能力(Generalization)详解 | 训练准确率 vs 测试准确率(附详尽Python代码演示)|定义、数学表达、影响因素、实际意义、三者的关系与工程实践建议|典型案例与可视化
大家好,我是爱酱。本篇将会系统讲解机器学习中三个密切相关但常被混淆的核心概念:泛化能力(Generalization Ability)、训练准确率(Training Accuracy)与测试准确率(Testing Accuracy)。内容包括定义、数学表达、影响因素、实际意义、三者的关系与工程实践建议,适合初学者和进阶者系统理解。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-29 18:21:00
602
原创 【AI概念】AI偏见(Bias)与可解释性(Explainability)详解| 核心概念、成因、现实影响、主流方法和工程实践 | 定义、数学表达、真实案例、技术路线和两者的关系、未来趋势与挑战
大家好,我是爱酱。本篇将会系统讲解AI偏见(Bias in AI)与可解释性(Explainability, XAI)的核心概念、成因、现实影响、主流方法和工程实践。内容包括定义、数学表达、真实案例、技术路线和两者的关系,适合初学者和进阶者系统理解注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-28 01:19:21
981
原创 【AI概念】模型参数(Parameters)vs. 超参数(Hyperparameters)详解| 定义、原理、典型举例、数学表达、二者区别与联系,以及工程实践中的调优方法
大家好,我是爱酱。本篇将会系统讲解机器学习中常被混淆的两个核心概念:模型参数(Parameters)与超参数(Hyperparameters)。内容包括定义、原理、典型举例、数学表达、二者区别与联系,以及工程实践中的调优方法,适合初学者和进阶者系统理解。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-28 00:36:34
1044
原创 【AI概念】精度(Precision)vs 召回率(Recall)vs F1分数(F1 Score)详解(附详尽Python代码演示)| 定义与原理、数学公式、案例与代码可视化、工程应用建议、典型案例
大家好,我是爱酱。本篇将会系统讲解机器学习分类模型中最常用的三大评价指标:精度(Precision)、召回率(Recall)和F1分数(F1 Score)。内容包括定义、数学公式、直观解释、优缺点、典型应用场景和三者的权衡关系,适合初学者和进阶者系统理解。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-27 23:59:20
500
原创 【AI概念】卷积神经网络(CNN)vs. 循环神经网络(RNN)vs. Transformer详解(附详尽Python代码演示)| 定义与原理、数学公式、案例与代码可视化、结构对比与优缺点
大家好,我是爱酱。本篇將會系统梳理卷积神经网络(Convolutional Neural Network, CNN)、循环神经网络(Recurrent Neural Network, RNN)和Transformer三大深度学习架构的原理、结构、优势、典型应用与数学表达。内容非常详细,并有友善的代码解释、流程解析等,适合初学者和进阶者系统理解。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-27 21:45:15
1107
原创 【AI概念】集成学习(Ensemble Learning):Bagging与Boosting详解(附Python代码演示)|有什么分别?原理、数学推导与应用|随机森林|AdaBoost、XGBoost
大家好,我是爱酱。本篇将会系统讲解集成学习(Ensemble Learning)、Bagging(Bootstrap Aggregating)与Boosting的核心原理、数学表达、优缺点、典型算法和工程应用。内容非常详细,并有友善的代码解释、流程解析等,适合初学者和进阶者系统理解。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-26 20:30:53
1044
2
原创 【AI概念】梯度下降(Gradient Descent)vs 随机梯度下降(SGD)vs 批量梯度下降(Batch GD)详解(附详尽Python代码演示)| 定义与原理、数学公式、案例与代码可视化
大家好,我是爱酱。本篇将会系统梳理梯度下降(Gradient Descent)、随机梯度下降(Stochastic Gradient Descent, SGD)和批量梯度下降(Batch Gradient Descent, Mini-batch GD)的核心原理、数学表达、优缺点与工程应用。内容详细,并有友善的代码解释、流程解析等,适合初学者和进阶者系统理解。注:本文章含大量数学算式、详细例子说明及大量代码演示,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-26 03:33:02
874
原创 【AI概念】特征工程 vs 特征选择 vs 特征提取 详解(附Python代码演示)|特征处理类别、他们有什么区别|定义与本质、数学表达、应用场景、几何直观、典型案例|他们的联系及区别、可视化代码演示
大家好,我是爱酱。本篇将会系统讲解机器学习中三个极易混淆但又核心的概念:特征工程(Feature Engineering)、特征选择(Feature Selection)与特征提取(Feature Extraction)。内容包括定义、原理、典型方法、联系区别与实际案例,适合初学者和进阶者系统理解。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-25 23:19:07
765
原创 【AI概念】监督学习(Supervised) vs. 无监督学习(Unsupervised) vs. 半监督/自监督学习(Semi/Self-supervised)详解(附详尽Python代码演示)
大家好,我是爱酱。本篇将会系统讲解监督学习(Supervised Learning)、无监督学习(Unsupervised Learning)、半监督学习(Semi-supervised Learning)和自监督学习(Self-supervised Learning)的核心定义、原理、典型算法、应用场景与区别联系。每部分都详细展开,适合初学者和进阶者系统理解。注:本文章含大量数学算式、详细例子说明及大量代码演示,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-25 21:15:15
1964
原创 【AI概念】过拟合(Overfitting)vs 欠拟合(Underfitting)详解 | 他们有什么区别?|定义、数学表达、几何直观、典型案例、成因、检测方法以及工程应对策略|偏差方差权衡、正则化
大家好,我是爱酱。本篇将会系统讲解机器学习中最常见、最容易混淆的两个概念:过拟合(Overfitting)与欠拟合(Underfitting)。内容包括定义、数学表达、几何直观、典型案例、成因、检测方法以及工程应对策略。每部分都会详细展开,适合初学者和进阶者系统理解。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-24 22:47:22
1107
原创 【AI概念】朴素聚类方法:层次聚类(Hierarchical Clustering)与密度聚类(Density-Based Clustering)有什么区别?算法流程数学推导、典型代码可视化、应用建议
大家好,我是爱酱。本篇将会系统讲解朴素聚类方法中的两大经典代表:层次聚类(Hierarchical Clustering)和密度聚类(Density-Based Clustering, 以DBSCAN为例)。内容包括基本原理、算法流程、数学表达、实际案例和工程应用,适合初学者和进阶读者。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-24 21:24:19
694
原创 【AI深究】随机森林(Random Forest)全网最详细全流程详解与案例(附Python代码演示)|集成学习|数学原理、案例流程、代码演示及结果解读|参数与调优、工程启示、单棵决策树的对比、优缺点
大家好,我是爱酱。本篇将会系统地讲解随机森林(Random Forest)的原理、核心思想、数学表达、算法流程、代码实现与工程应用。内容适合初学者和进阶读者,配合公式和可视化示例。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!注:随机森林(Random Forest)与决策树(Decision Tree)息息相关,因此不了解决策树的同学建议先去了解一下,爱酱也有文章深入探讨决策树,大家不妨去看看。
2025-06-23 18:35:03
1022
原创 【AI深究】决策树(Decision Tree)全网最详细全流程详解与案例(附Python代码演示)|数学原理、案例流程、代码演示及结果解读|ID3、C4.5、CART算法|工程启示、分类、回归决策树
大家好,我是爱酱。本篇将会系统讲解决策树(Decision Tree)的定义、原理、数学推导、常见算法、代码实现与工程应用。内容适合初学者和进阶读者,配合公式和可视化示例。这期的文章会较简单,如果大家有兴趣可以到爱酱主页搜寻更多分类、回归等的算法!注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-23 17:34:44
1246
原创 【AI概念】K均值聚类(K-Means Clustering)与K-近邻算法(KNN)是什麽?有什么区别?机器学习中担任什么角色?|算法流程与数学推导、典型代码实现、工程应用建议|聚类、回归、分类任务
大家好,我是爱酱。本篇将会系统梳理K-Means聚类与K-最近邻(KNN)的定义、核心思想、主要区别、机器学习中的典型应用与工程意义。内容适合初学者和进阶读者,配合公式和对比表格,帮助你一文看懂两大经典算法。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!爱酱也单独发过K-近邻算法和K均值聚类的单独文章介绍,内容非常深入,并包含大量代码演示跟范例,欢迎大家去看看,加深对这两个算法的了解!
2025-06-22 19:28:27
1102
原创 【AI概念】协方差(covariance)与相关系数(correlation)是什麽?有什么区别?在机器学习中担任什么角色?|协方差矩阵、马氏距离、归一化|主成分分析PCA、代码实现与可视化、实际应用
大家好,我是爱酱。本篇將會系统讲解协方差(covariance,又称共变异数)与相关系数(correlation coefficient,或简称correlation)的定义、公式、几何意义、实际案例和应用场景。内容适合初学者和进阶读者,分步解释,配合公式和可视化示例。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-22 18:16:22
843
原创 【AI深究】朴素贝叶斯(Naive Bayes)全网最详细全流程详解与案例(附大量Python代码演示)| 数学原理、案例流程、代码演示及结果解读 | 工程启示、如何用真实数据集做类似可视化?
大家好,我是爱酱。本篇将会系统讲解朴素贝叶斯(Naive Bayes)的原理、公式推导、案例流程、代码实现与工程建议。内容适合初学者和进阶读者,分步解释,配合公式和具体例子。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-21 03:28:36
816
原创 【AI深究】主成分分析(PCA)全网最详细全流程详解与案例(附大量Python代码演示)|数学原理、案例流程、代码演示及结果解读|几何意义与主成分选择、与LDA的对比、实际应用场景、工程建议与优缺点
大家好,我是爱酱。本篇将系统讲解主成分分析(PCA, Principal Component Analysis)的原理、数学推导、案例流程、代码实现和工程建议。内容适合初学者和进阶读者,分步解释,配合公式和具体例子。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-21 00:28:14
901
原创 【AI概念】特征向量(Eigenvector)与特征值(Eigenvalue)是什麽?他们有什么区别?各自在机器学习中担任什么样的角色?| 求解方法、具体例子、几何动画与代码直观演示、实际工程应用场合
大家好,我是爱酱。相信很多同学在学习机器学习是都会听过这两个词。上网找资料的时候会发现一大堆数学概念、矩阵(Matrix)计算等,看得一头雾水。本篇将系统讲解特征向量(Eigenvector)与特征值(Eigenvalue)的定义、直观理解、数学推导、案例流程和应用场景。内容适合初学者和进阶读者,分步解释,配合公式、具体例子及仔细的流程分析,让大家真正了解这两个重要的概念。注:本文章含大量数学算式、详细例子说明及代码演示,大量干货,建议先收藏再慢慢观看理解。你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-20 20:28:01
1449
原创 【AI深究】线性判别分析(LDA)全网最详细全流程详解与案例(附大量Python代码演示)|数学原理、案例流程、代码演示及结果解读|LDA与PCA的区别、实际业务中应用、正则化与扩展、多类别决策边界
大家好,我是爱酱。本篇将会系统讲解线性判别分析(LDA, Linear Discriminant Analysis)的原理、数学推导、案例流程、代码实现和工程建议。内容详细分步,适合新手和进阶者理解与实操。详细内容涵盖:数学原理、案例流程、代码演示及结果解读,LDA与PCA的区别、实际业务中应用、正则化与扩展、多类别决策边界以及优缺点和工程建议都会覆盖到!注:本文章含大量数学算式、详细例子说明及代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-20 02:12:56
712
原创 【AI深究】逻辑回归(Logistic Regression)全网最详细全流程详解与案例(附大量Python代码演示)| 数学原理、案例流程、代码演示及结果解读 | 决策边界、正则化、优缺点及工程建议
大家好,我是爱酱。本篇将系统讲解逻辑回归(Logistic Regression)的原理、公式、案例流程、代码实现和工程建议。内容详细分步,便于新手和进阶读者理解和实操。注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-19 21:24:28
1138
原创 【AI深究】K-近邻算法(KNN)详细全流程详解与案例(附大量Python代码演示)| 回归/分类、原理与算法流程、案例与完整代码演示 |K值选择与模型表现、距离度量的选择与影响、加权KNN、工程建议
大家好,我是爱酱。本篇我们将系统讲解K-近邻算法(KNN),内容涵盖原理、数学公式、案例流程、代码实现和工程建议,适合新手和进阶者学习。详细内容涵盖:K值选择与模型表现、距离度量的选择与影响、加权KNN,分类跟回归任务都会覆盖到!注:本文章含大量数学算式、详细例子说明及代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!注:本文章颇长近7000字,非常耗时制作,建议先收藏再慢慢观看。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-19 20:50:06
1536
原创 【AI深究】深度确定性策略梯度(DDPG)全网最详细全流程详解与案例(附Python代码演示)| 原理与数学基础、完整案例流程、可视化示范 | Pendulum-v1案例代码演示 | 优缺点与工程建议
大家好,我是爱酱。继上一篇DQN详解后,本篇我们来系统介绍DDPG(Deep Deterministic Policy Gradient)——一种专为连续动作空间设计的深度强化学习算法。DDPG结合了确定性策略梯度和DQN的关键技术,广泛应用于机器人控制、自动驾驶等连续控制场景。本文将详细讲解DDPG的原理、数学公式、案例流程和完整代码,风格与上一篇DQN一致,便于新手和进阶者理解和实操。注:本文章含大量数学算式、详细例子说明及代码演示,大量干货,建议先收藏再慢慢观看理解。
2025-06-18 05:17:44
1023
原创 【AI深究】深度Q网络(DQN)全网最详细全流程详解与案例(附Python代码演示)| 原理与数学基础、案例流程(CartPole示例)| 案例代码演示 | 关键点与工程建议
大家好,我是爱酱。本篇我们聚焦于强化学习中最具代表性的深度方法之一——DQN(Deep Q-Network)。DQN是Q-Learning的深度扩展,能处理高维状态空间(如图像),广泛用于Atari游戏、机器人等场景。下面以简单环境为例,详细讲解DQN的原理、流程和代码实现。注:本文章含大量数学算式、详细例子说明及代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-18 02:22:36
1106
原创 【算法解析5/5 下】强化学习(RL)深度解析:常用主流算法(附Python代码)|动态规划、蒙特卡洛方法、时序差分学习、Q-Learning、策略梯度与Actor-Critic方法|优缺点与工程建议
注:此为两部分中的下部,上部请按下面链接前往!(强烈建议先看上部分)大家好,我是爱酱。强化学习是机器学习五大任务中最具挑战性和潜力的分支之一,广泛应用于智能控制、博弈、机器人、自动驾驶、推荐系统等领域。作为强化学习专题的第二部分,本节将围绕实际案例,详细讲解强化学习的典型算法、核心思想、数学表达与操作流程,帮助你系统掌握强化学习的实践方法。(将继续延续上部分的完结部分)
2025-06-17 23:55:43
1233
2
原创 【算法解析5/5 上】强化学习(RL)深度解析:常用算法、数学目标与核心公式、与其他任务的差别 | 状态、动作、奖励、策略、环境转移概率、折扣因子 | MDP、累积奖励、策略与价值函数、贝尔曼方程
注:此为两部分中的上部,请继续观看下部分!大家好,我是爱酱。强化学习是机器学习五大任务中最具挑战性和潜力的分支之一,广泛应用于智能控制、博弈、机器人、自动驾驶、推荐系统等领域。本篇作为强化学习专题的第一部分,将系统介绍强化学习的基本概念、核心要素、数学建模与理论基础,为后续算法和实战篇打下坚实基础。
2025-06-17 23:13:07
846
原创 【算法解析4/5】降维任务深度解析:常用算法、评估指标及主流算法 | 特征选择、特征提取/投影 | 相关性分析、Lasso、嵌入式方法 | PCA、LDA、t-SNE、UMAP、Autoencoder
大家好,我是爱酱。继前几篇系统探讨了分类、回归、聚类等机器学习核心任务,本篇我们聚焦于降维(Dimensionality Reduction)。降维属于无监督学习(Unsupervised Learning)的一类典型任务。它是数据分析和机器学习中极为重要的预处理与探索工具,能够在保留数据主要结构和信息的同时,降低特征维度,提升计算效率、可视化能力和模型泛化性能。本文将系统梳理降维的动机、主流方法、数学原理、典型流程与代码实现,便于你直接用于技术文档和学习。
2025-06-16 17:20:06
904
原创 【AI深究】支持向量机(SVM, Support Vector Machine)全网最详细全流程详解与案例(附Python代码演示)|SVM、SVR|分类、回归任务流程|优、缺点|例子案例及数据演示
大家好,我是爱酱。继前几篇系统讲解了集成方法、GMM、DBSCAN等主流算法,这一篇我们来聊聊机器学习中极为经典且实用的模型——支持向量机(SVM)。SVM不仅能做分类,还能做回归、异常检测等任务。本文将围绕SVM的核心原理、数学公式、不同用途(分类/回归)、常见核函数、实际案例与代码实现等,详细分步骤讲解,便于你直接用于技术文档和学习。注:本文章含大量数学算式、详细例子说明及代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-16 16:24:27
1332
原创 【AI深究】集成方法(Ensemble)全网最详细全流程详解与案例(附Python代码演示)|详解:Bagging与Boosting|随机森林|AdaBoost|XGBoost|优、缺点|选择应用建议
大家好,我是爱酱。前几篇我们讲了聚类、回归等基础任务,这一期我们来聊聊机器学习中提升模型效果的“法宝”——集成方法(Ensemble Methods)。本篇将用Iris鸢尾花分类为例,详细讲解Bagging和Boosting的原理、流程和代码,让你像看层次聚类那篇一样,能一步步跟着学会。注:本文章含大量数学算式、详细例子说明及代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-15 10:00:00
1828
原创 【AI深究】高斯混合模型(GMM)全网最详细全流程详解与案例(附Python代码演示) | 混合模型概率密度函数、多元高斯分布概率密度函数、期望最大化(EM)算法 | 实际案例与流程 | 优、缺点分析
大家好,我是爱酱。继前几篇介绍了层次聚类、K均值聚类和密度聚类之后,本篇我们聚焦于另一种强大的聚类算法——高斯混合模型(GMM)。GMM是一种基于概率的软聚类方法,能够为每个样本点计算属于各个簇的概率,适合复杂数据的建模。本文将系统介绍GMM的原理、数学表达、实际案例流程及Python代码实现,加上大量公式给出,方便你直接用于技术文档和学习。注:本文章含大量数学算式、详细例子说明及代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!
2025-06-15 00:15:00
947
原创 【AI深究】密度聚类(DBSCAN)全网最详细全流程详解与案例(附Python代码演示)| 数学定义与公式 | DBSCAN算法 | 实际案例与流程 | 代码实现 | 优、缺点分析
大家好,我是爱酱。继前两篇介绍了层次聚类和K均值聚类之后,本期我们聚焦于密度聚类(DBSCAN, Density-Based Spatial Clustering of Applications with Noise)。DBSCAN是一种强大的无监督聚类算法,能够识别任意形状的簇并自动检测异常点。本文将系统介绍DBSCAN的原理、数学表达、实际案例流程和Python代码实现,方便你直接用于技术文档和学习。注:本文章含大量数学算式、详细例子说明及代码演示,大量干货,建议先收藏再慢慢观看理解。
2025-06-14 02:18:52
707
原创 【AI深究】K均值聚类(K-Means Clustering)全网最详细全流程详解与案例(附Python代码演示) | 肘部法则、轮廓系数 | 优点、缺点 | 例子案例及数据
大家好,我是爱酱。继上一篇层次聚类(Hierarchical Clustering)之后,本期我们聚焦于K均值聚类(K-Means Clustering)。K均值是最经典、应用最广的无监督聚类算法之一,广泛用于客户分群、图像处理、传感器数据分析等领域。本文将系统介绍K均值聚类的原理、算法流程、数学表达、实际应用、优缺点,并配以公式,便于你直接用于技术文档和学习。注:本文章含大量数学算式、详细例子说明及代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都
2025-06-14 01:14:06
913
Python教学系列-入门篇-第一课-Python介绍及基础入门(含中文、英文版本PPT+完整Python示范档案)(免费试学)
2025-06-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人