[图像处理]-Opencv中数据类型CV_8U, CV_16U, CV_16S, CV_32F 以及 CV_64F是什么?

1.宏定义

首先来说CV_8U, CV_16U, CV_16S, CV_32F 以及 CV_64F,都是opencv定义的数据类型。
具体定义如下

#define CV_8S   1
#define CV_16U  2
#define CV_16S  3
#define CV_32S  4
#define CV_32F  5
#define CV_64F  6
#define CV_16F  7
#define CV_8UC1 CV_MAKETYPE(CV_8U,1)
#define CV_8UC2 CV_MAKETYPE(CV_8U,2)
#define CV_8UC3 CV_MAKETYPE(CV_8U,3)
#define CV_8UC4 CV_MAKETYPE(CV_8U,4)
#define CV_8UC(n) CV_MAKETYPE(CV_8U,(n))
 
#define CV_8SC1 CV_MAKETYPE(CV_8S,1)
#define CV_8SC2 CV_MAKETYPE(CV_8S,2)
#define CV_8SC3 CV_MAKETYPE(CV_8S,3)
#define CV_8SC4 CV_MAKETYPE(CV_8S,4)
#define CV_8SC(n) CV_MAKETYPE(CV_8S,(n))
 
#define CV_16UC1 CV_MAKETYPE(CV_16U,1)
#define CV_16UC2 CV_MAKETYPE(CV_16U,2)
#define CV_16UC3 CV_MAKETYPE(CV_16U,3)
#define CV_16UC4 CV_MAKETYPE(CV_16U,4)
#define CV_16UC(n) CV_MAKETYPE(CV_16U,(n))
 
#define CV_16SC1 CV_MAKETYPE(CV_16S,1)
#define CV_16SC2 CV_MAKETYPE(CV_16S,2)
#define CV_16SC3 CV_MAKETYPE(CV_16S,3)
#define CV_16SC4 CV_MAKETYPE(CV_16S,4)
#define CV_16SC(n) CV_MAKETYPE(CV_16S,(n))
 
#define CV_32SC1 CV_MAKETYPE(CV_32S,1)
#define CV_32SC2 CV_MAKETYPE(CV_32S,2)
#define CV_32SC3 CV_MAKETYPE(CV_32S,3)
#define CV_32SC4 CV_MAKETYPE(CV_32S,4)
#define CV_32SC(n) CV_MAKETYPE(CV_32S,(n))
 
#define CV_32FC1 CV_MAKETYPE(CV_32F,1)
#define CV_32FC2 CV_MAKETYPE(CV_32F,2)
#define CV_32FC3 CV_MAKETYPE(CV_32F,3)
#define CV_32FC4 CV_MAKETYPE(CV_32F,4)
#define CV_32FC(n) CV_MAKETYPE(CV_32F,(n))
 
#define CV_64FC1 CV_MAKETYPE(CV_64F,1)
#define CV_64FC2 CV_MAKETYPE(CV_64F,2)
#define CV_64FC3 CV_MAKETYPE(CV_64F,3)
#define CV_64FC4 CV_MAKETYPE(CV_64F,4)
#define CV_64FC(n) CV_MAKETYPE(CV_64F,(n))
 
#define CV_16FC1 CV_MAKETYPE(CV_16F,1)
#define CV_16FC2 CV_MAKETYPE(CV_16F,2)
#define CV_16FC3 CV_MAKETYPE(CV_16F,3)
#define CV_16FC4 CV_MAKETYPE(CV_16F,4)
#define CV_16FC(n) CV_MAKETYPE(CV_16F,(n))

2.具体含义

S = 有符号整型 U = 无符号整型 F = 浮点型

CV_8U - 8位无符号整数(0…255)

CV_8S - 8位有符号整数(-128…127)

CV_16U - 16位无符号整数(0…65535)

CV_16S - 16位有符号整数(-32768…32767)

CV_32S - 32位有符号整数(-2147483648…2147483647)

CV_32F - 32位浮点数(-FLT_MAX…FLT_MAX,INF,NAN)

CV_64F - 64位浮点数(-DBL_MAX…DBL_MAX,INF,NAN)

而后面的C1、C2、C3是什么意思呢?
这里的1、2、3代表的是通道数,比如RGB就是3通道,颜色表示最大为255,所以可以用CV_8UC3这个数据类型来表示;灰度图就是C1,只有一个通道;而带alph通道的PNG图像就是C4,是4通道图片。

<think>好的,我需要帮用户编写一段C++代码,将3通道的彩色图像转换为RGGB格式的Bayer图像,并且支持处理8位无符号(CV_8U)和16位整型(CV_16S)数据。首先,我需要理解用户的需求。 用户提到的是将3通道图像转换为Bayer图像,通常Bayer模式是相机传感器捕捉原始图像的方式,常见的如RGGB排列。这意味着每个像素点只有一个颜色通道的信息,其他两个通道的信息被丢弃。例如,在RGGB排列中,偶数行偶数列是红色,偶数行奇数列是绿色,奇数行偶数列是绿色,奇数行奇数列是蓝色。 不过,用户提到输入是3通道的彩色图像,这可能有些矛盾,因为通常Bayer图像是单通道的,每个像素只有一个颜色值。所以可能需要从3通道的RGB图像中,根据Bayer模式选择对应的颜色通道值,生成单通道的Bayer图像。例如,对于每个像素位置,根据其在Bayer模式中的位置选择R、G或B的值。 接下来,需要考虑处理不同的数据类型,即CV_8U和CV_16S。代码需要能够处理这两种数据深度,可能需要使用模板函数或者根据不同的数据类型进行分支处理。 首先,我需要检查输入图像是否为3通道,如果不是,可能需要报错或者进行转换。然后,遍历每个像素,根据其在Bayer模式中的位置(行和列的奇偶性)来选择对应的颜色通道值。例如,RGGB模式: - 偶数行,偶数列:红色通道(0) - 偶数行,奇数列:绿色通道(1) - 奇数行,偶数列:绿色通道(1) - 奇数行,奇数列:蓝色通道(2) 需要注意的是,OpenCV中默认的颜色顺序是BGR,但用户提到的是3通道彩色图像,可能需要确认输入是否为RGB格式。如果用户使用的是默认的cv::imread读取图像,那么图像是BGR格式的,这时候红色通道是第三个通道(索引2),蓝色是第一个(索引0)。但是用户可能需要的是RGB顺序,所以需要明确这一点。如果用户提供的输入是RGB格式,则通道顺序是R(0)、G(1)、B(2),如果是BGR,则需要调整通道索引。 假设用户输入的图像是RGB格式的,那么R是通道0,G是通道1,B是通道2。但需要确认这一点,否则结果会出错。或者,用户可能希望处理的是BGR图像,但转换为RGGB的Bayer,这时候可能需要调整通道索引。这部分可能需要用户进一步澄清,但在代码中可能需要根据实际情况调整通道索引。 接下来,编写函数。函数需要接受一个cv::Mat输入,并输出一个单通道的Bayer图像。由于需要处理不同的数据类型,可以使用模板函数或者使用cv::Mat的depth()方法进行分支处理。例如,使用模板函数来处理不同的数据类型,或者使用cv::Mat::type()来检查数据类型,并分别处理。 可能的实现步骤: 1. 检查输入图像是否为3通道,否则报错。 2. 创建输出图像,单通道,与输入相同的数据类型和尺寸。 3. 遍历每个像素,根据其位置在Bayer模式中选择对应的通道值。 4. 根据输入的数据类型8U或16S),使用相应的处理方式,可能需要模板或分支处理。 关于数据类型处理,可能需要使用cv::Mat的模板方法ptr<type>(row)来访问像素数据,并根据数据类型进行转换。例如,对于8U,使用uchar,对于16S,使用short。 可能的代码结构: 使用函数重载或模板来处理不同数据类型。或者,在函数内部根据输入图像的depth()进行判断,并调用不同的处理循环。 例如: void convertToRGGBBayer(const cv::Mat& src, cv::Mat& dst) { CV_Assert(src.type() == CV_8UC3 || src.type() == CV_16SC3); dst.create(src.size(), CV_MAKETYPE(src.depth(), 1)); if (src.depth() == CV_8U) { // 处理8U的情况 } else if (src.depth() == CV_16S) { // 处理16S的情况 } } 在内部循环中,根据行和列的奇偶性选择对应的通道索引。需要注意的是,Bayer模式通常是按照2x2的重复模式,比如RGGB的行排列为RGRG...,下一行GBGB...,依此类推。因此,对于偶数行(从0开始),偶数列取红色,奇数列取绿色;对于奇数行,偶数列取绿色,奇数列取蓝色。假设输入的图像是RGB格式,所以红色是通道0,绿色是通道1,蓝色是通道2。 例如,对于第i行,第j列: if (i % 2 == 0) { // 偶数行 if (j % 2 == 0) { channel = 0; // R } else { channel = 1; // G } } else { // 奇数行 if (j % 2 == 0) { channel = 1; // G } else { channel = 2; // B } } 然后,将该位置的对应通道的值赋给输出图像的该位置。 需要注意的是,输入图像是3通道的,而输出是单通道的。因此,在循环中,对于每个像素位置,选择对应的通道值,并复制到输出图像中。 在代码实现中,需要注意行和列的遍历,以及正确访问像素值。对于不同的数据类型,需要使用正确的指针类型(uchar* 或 short*)来访问数据。 可能的错误点: 1. 输入图像不是3通道,或者数据类型不符合要求。 2. 通道索引是否正确(假设输入是RGB还是BGR)。 3. 数据类型处理是否正确,特别是在处理16位有符号整数时是否使用正确的类型转换。 另外,用户可能需要考虑是否需要对数据进行归一化或缩放,尤其是在处理不同位深时,但根据问题描述,可能直接复制对应通道的值即可。 综上所述,代码需要包括以下步骤: - 检查输入是否为CV_8UC3或CV_16SC3。 - 创建单通道的输出图像。 - 遍历每个像素,根据行列奇偶性选择对应的通道值。 - 处理不同数据类型的情况。 最后,测试代码以确保正确性,例如使用示例图像检查输出是否符合RGGB模式。</think>以下是一个实现将3通道RGB图像转换为RGGB格式Bayer图像的C++代码,支持`CV_8U`和`CV_16S`数据类型: ```cpp #include <opencv2/opencv.hpp> using namespace cv; // 通用模板函数处理不同数据类型 template<typename T> void convertRGB2RGGB(const Mat& src, Mat& dst) { CV_Assert(src.channels() == 3); // 必须为3通道图像 dst.create(src.size(), CV_MAKETYPE(src.depth(), 1)); for (int i = 0; i < src.rows; ++i) { for (int j = 0; j < src.cols; ++j) { // 获取当前像素的RGB值 const Vec<T, 3>& pixel = src.at<Vec<T, 3>>(i, j); T output_value; // RGGB Bayer模式判断 if (i % 2 == 0) { // 偶数行 if (j % 2 == 0) { // 偶数列 -> R output_value = pixel[0]; } else { // 奇数列 -> G output_value = pixel[1]; } } else { // 奇数行 if (j % 2 == 0) { // 偶数列 -> G output_value = pixel[1]; } else { // 奇数列 -> B output_value = pixel[2]; } } dst.at<T>(i, j) = output_value; } } } // 接口函数 void convertToRGGBBayer(const Mat& src, Mat& dst) { CV_Assert(src.depth() == CV_8U || src.depth() == CV_16S); CV_Assert(src.channels() == 3); if (src.depth() == CV_8U) { convertRGB2RGGB<uchar>(src, dst); } else if (src.depth() == CV_16S) { convertRGB2RGGB<short>(src, dst); } } /* 使用示例 int main() { Mat rgb_image = imread("input.jpg", IMREAD_UNCHANGED); // 若输入是BGR格式,需转换为RGB cvtColor(rgb_image, rgb_image, COLOR_BGR2RGB); Mat bayer_image; convertToRGGBBayer(rgb_image, bayer_image); imwrite("bayer_output.png", bayer_image); return 0; } */ ``` --- ### **代码说明** 1. **模板函数** `convertRGB2RGGB`: - 使用泛型编程处理不同数据类型(`uchar`和`short`) - 遍历每个像素,根据行列奇偶性选择RGGB通道: - 偶数行偶数列:R通道(索引0) - 偶数行奇数列:G通道(索引1) - 奇数行偶数列:G通道(索引1) - 奇数行奇数列:B通道(索引2) 2. **接口函数** `convertToRGGBBayer`: - 检查输入合法性(数据类型必须为`CV_8U`或`CV_16S`,通道数为3) - 根据数据类型调用模板实现 3. **注意**: - 假设输入图像为**RGB格式**(若使用`imread`默认读取BGR格式,需先转换为RGB) - 输出图像为单通道,保留原始位深(8位/16位) --- ### **效果示意图** ``` 原始RGB像素布局: R G R G R G G B G B G B R G R G R G G B G B G B 转换为RGGB Bayer后: R G R G R G G B G B G B R G R G R G G B G B G B ``` --- ### **数据类型支持** | 输入类型 | 输出类型 | 典型应用场景 | |---------------|---------------|--------------------| | `CV_8UC3` | `CV_8UC1` | 普通8图像处理 | | `CV_16SC3` | `CV_16SC1` | 医学/工业高精度图像 | 通过这段代码,可以灵活处理不同位深的RGB图像,生成符合工业相机标准的RGGB Bayer格式原始数据。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值