Hadoop奶茶数据平台技术栈
后端技术栈
- Hadoop生态:HDFS存储原始数据,YARN资源管理,MapReduce/Spark进行数据处理
- Hive构建数据仓库,Impala/Presto快速查询
- Flume/Kafka用于日志收集和实时数据流
- Spring Boot提供REST API服务
前端技术栈
- Vue.js/React框架构建管理界面
- ECharts/AntV实现数据可视化看板
- Element UI/Ant Design组件库
数据库设计
- MySQL:存储门店信息、用户订单等结构化数据(主表示例)
CREATE TABLE orders ( order_id VARCHAR(36) PRIMARY KEY, store_id INT, product_json JSON, -- 存储奶茶品类和定制选项 price DECIMAL(10,2), create_time TIMESTAMP );
- HBase:存储非结构化数据如用户行为日志(RowKey设计)
用户ID_时间戳_操作类型
核心功能模块设计
数据采集层
- POS系统对接:通过API接收各门店订单数据
- IoT设备数据:清洗后存入HDFS路径
/input/tea_sales/hourly/
- 用户行为埋点:FlumeAgent实时推送至Kafka Topic
分析功能源码示例
// Spark热门单品分析Job
JavaRDD<Order> orders = spark.read().json("hdfs://orders/*").as(Encoders.bean(Order.class));
Dataset<Row> topProducts = orders.groupBy("productId")
.count()
.orderBy(col("count").desc());
可视化功能
- 实时看板:WebSocket推送Kafka处理后的指标数据
- 自定义报表:基于HiveSQL生成季度环比分析CSV
测试方案设计
大数据层测试
- MapReduce作业:MRUnit框架验证WordCount式统计逻辑
- Hive表:生成100GB测试数据集验证分区查询性能
系统集成测试
- JMeter模拟200门店并发上传销售数据
- 验证1分钟内完成TB级数据的分布式处理
监控设计
- Prometheus+Grafana监控集群节点资源使用
- 自定义告警规则:发现HDFS磁盘使用率>85%触发邮件通知
注:完整源码需结合具体业务需求开发,以上为关键技术点示例。实际部署时需要配置Kerberos安全认证和Zookeeper协调服务。