基于springboot+vue的Hadoop的奶茶数据平台网站设计开发

Hadoop奶茶数据平台技术栈

后端技术栈

  • Hadoop生态:HDFS存储原始数据,YARN资源管理,MapReduce/Spark进行数据处理
  • Hive构建数据仓库,Impala/Presto快速查询
  • Flume/Kafka用于日志收集和实时数据流
  • Spring Boot提供REST API服务

前端技术栈

  • Vue.js/React框架构建管理界面
  • ECharts/AntV实现数据可视化看板
  • Element UI/Ant Design组件库

数据库设计

  • MySQL:存储门店信息、用户订单等结构化数据(主表示例)
    CREATE TABLE orders (
      order_id VARCHAR(36) PRIMARY KEY,
      store_id INT,
      product_json JSON,  -- 存储奶茶品类和定制选项
      price DECIMAL(10,2),
      create_time TIMESTAMP
    );
    

  • HBase:存储非结构化数据如用户行为日志(RowKey设计)
    用户ID_时间戳_操作类型

核心功能模块设计

数据采集层

  • POS系统对接:通过API接收各门店订单数据
  • IoT设备数据:清洗后存入HDFS路径/input/tea_sales/hourly/
  • 用户行为埋点:FlumeAgent实时推送至Kafka Topic

分析功能源码示例

// Spark热门单品分析Job
JavaRDD<Order> orders = spark.read().json("hdfs://orders/*").as(Encoders.bean(Order.class));
Dataset<Row> topProducts = orders.groupBy("productId")
                                .count()
                                .orderBy(col("count").desc());

可视化功能

  • 实时看板:WebSocket推送Kafka处理后的指标数据
  • 自定义报表:基于HiveSQL生成季度环比分析CSV

测试方案设计

大数据层测试

  • MapReduce作业:MRUnit框架验证WordCount式统计逻辑
  • Hive表:生成100GB测试数据集验证分区查询性能

系统集成测试

  • JMeter模拟200门店并发上传销售数据
  • 验证1分钟内完成TB级数据的分布式处理

监控设计

  • Prometheus+Grafana监控集群节点资源使用
  • 自定义告警规则:发现HDFS磁盘使用率>85%触发邮件通知

注:完整源码需结合具体业务需求开发,以上为关键技术点示例。实际部署时需要配置Kerberos安全认证和Zookeeper协调服务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值