神经网络训练集准确率低,神经网络训练结果分析

本文探讨了神经网络中训练集和测试集的概念及其作用。训练集用于建立模型,验证集用于评估模型性能,而测试集则提供模型的最终性能评估。当训练集准确率为88%,测试集仅为50%时,可能是因为过拟合或数据分布差异。文章还提到了时间序列数据的划分策略,并解释了神经网络中样本集的理解和目标——使测试样本输出接近目标输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、测试集和训练集是什么意思?

1.测试集:

机器学习学科中,学习样本三部分之一,测试集用来检验最终选择最优的模型的性能如何。

2.训练集:

机器学习学科中,学习样本三部分之一,训练集用于建立模型。验证集用来确定网络结构或者控制模型复杂程度的参数,而测试集则检验最终选择最优的模型的性能如何。

扩展资料

训练集用于监督学习中,监督学习是指利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。

监督学习是从标记的训练数据来推断一个功能的机器学习任务。训练数据包括一套训练示例。在监督学习中,每个实例都是由一个输入对象和一个期望的输出值组成。监督学习算法是分析该训练数据,并产生一个推断的功能,其可以用于映射出新的实例。

大数据环境下的机器学习算法,依据一定的性能标准,对学习结果的重要程度可以予以忽视。 采用分布式和并行计算的方式进行分治策略的实施,可以规避掉噪音数据和冗余带来的干扰,降低存储耗费,同时提高学习算法的运行效率。

参考资料来源:

参考资料来源:

谷歌人工智能写作项目:小发猫

2、神经网络算法中什么是训练集,什么是测试集?以及其各对应的作用?本人新手,望高手指

就是把样本数据分为训练集和测试集,训练集用来训练神经网络,测试集用来验证模型

3、时间序列数据怎样划分训练集,测试集和验证集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值