DeepSeek vs Anthropic:技术路线的正面冲突

#王者杯·14天创作挑战营·第5期#

一、背景:敌意从何而来?

在过去几个月,AI 社区突然被一场“口水战”点燃。Anthropic 的 CEO,在文章中公开对中国 AI 企业 DeepSeek 表现出强烈敌意。这种情绪并不只是商业层面的竞争,而是更深层次的 技术路线冲突

为什么会这样?要理解这一点,我们需要回到两家公司的技术基因:

  • Anthropic 出身于 OpenAI 派系,强调 大一统基座模型 + RLHF(人类反馈强化学习)+ Scaling Law(算力规模律)。它的逻辑是:只要模型更大、更贵、算力更多,就能持续在性能和安全上占优。

  • DeepSeek 则选择了一条看似“逆行”的路线:通过 R1 独立推理模型,强化“自博弈学习”,尽量减少人类反馈,并且在 V3 版本中展示出低成本训练的可能性。

当两条路线交汇时,矛盾便不可避免。一个坚持“更大更贵”,一个主张“更聪明更省”,这不仅是商业竞争,更是 AI 技术哲学的对撞


二、原理:两条路径的技术分野

1. Anthropic 的路径:大一统与安全叙事

Anthropic 继承了 OpenAI 的思路:

  • 基座模型:所有能力都集中在一个超大模型里,强调“一体化”。

  • RLHF:通过大量人工反馈,塑造模型的价值观与安全性。

  • Scaling Law:模型参数规模越大,性能越强,几乎成为行业信条。

这一逻辑的优点是 性能稳定可预期,也便于构建“安全高端”的品牌叙事。但缺点是:成本极高,对算力和资金要求几乎无上限。

2. DeepSeek 的路径:推理独立与低成本

DeepSeek 的 R1 模型走了一条相反的路:

  • 独立推理模型:不是依附基座,而是专注于逻辑推理的独立子系统。

  • 自博弈强化学习:让模型通过对弈式训练提升推理,而非过度依赖人类标注。

  • 低成本工程化:V3 展示出在有限算力下,依然可以训练出接近 SOTA 的模型。

它的核心突破点是:证明性能提升并不完全依赖“无限堆算力”。这打破了过去 AI 领域的主流叙事。


三、实践:技术对比与产业冲击

为了更直观地理解,我们用一张表来对比两者:

维度AnthropicDeepSeek冲突点
技术路径基座模型 + RLHFR1 独立推理 + 自博弈模型范式对立
成本逻辑高算力,高成本,高价 API工程效率,低成本训练算力护城河被削弱
商业模式安全高端,政府/企业大单开放、降本、效率导向定价与市场定位冲突
政策诉求倡导收紧 GPU 出口管制打破算力限制政策立场对立
舆论策略给 R1 贴“复现 o1”标签强调独立突破叙事权之争

1. 技术层面的直接冲击

  • Scaling Law 被挑战:DeepSeek 证明“性能提升 ≠ 单纯堆算力”。

  • GPU 护城河被稀释:昂贵 GPU 的必要性被质疑,英伟达的高估值逻辑也被动摇。

  • RLHF 地位动摇:自博弈强化学习减少对人类反馈的依赖,撼动了 Constitutional AI 的核心卖点。

2. 商业与政策层面的连锁反应

  • 商业层面:Anthropic 的高价 API 面临来自低成本替代的挑战。

  • 政策层面:为了稳住护城河,Anthropic 需要更强的出口管制来“筑墙”。

3. 舆论与叙事之争

  • DeepSeek:强调自己突破“效率与推理”。

  • Anthropic:在新一代模型发布前,先通过质疑 R1 来抢占舆论制高点。


四、总结:敌意的技术根源

从表面看,这是商业竞争;但从深层看,这是 三重叙事的冲突

  1. 路线之争:基座模型 vs 独立推理

  2. 护城河保卫战:算力壁垒 vs 工程效率

  3. 政策游说:开放竞争 vs 出口管制

一句话结论:
DeepSeek 用技术证明“推理≠算力”,这才让 Anthropic 如坐针毡。


升华:未来的开放问题

在播客里,我想留给大家几个值得思考的问题:

  • 如果推理可以独立于基座模型发展,我们还需要无限扩张的 Scaling Law 吗?

  • 当低成本训练路径逐渐成熟,会不会引发“AI 去中心化”的趋势?

  • RLHF 是否会退化为一个可选项,而不是必选项?

  • 政策上的“算力管制”是否真的能阻挡这种技术路线的扩散?

这场争论并不只是 DeepSeek 与 Anthropic 的对抗,而是 AI 技术未来分岔口的前奏


🎙️ 互动提示
如果你也在关注 AI 技术的未来,不妨留言告诉我:
👉 你更看好 大基座 + Scaling Law,还是 独立推理 + 低成本工程化
欢迎评论、转发,让更多人参与这场技术路线的讨论。

<think>我们已知用户希望将LangGraph和LangChain中的模型替换为本地部署的DeepSeek-R1模型(通过Ollama部署)。根据引用[4]中的信息,本地部署DeepSeek-R1模型可以通过Ollama完成。同时,引用[1]提到需要安装`langchain`和`ollama`等库。 因此,我们需要做以下几步: 1. 确保已经通过Ollama部署了DeepSeek-R1模型(1.5B版本)。 2. 安装必要的Python包。 3. 在LangChain中调用本地模型,然后将其集成到LangGraph中。 具体步骤: ### 步骤1:通过Ollama部署DeepSeek-R1模型 在终端(Windows下使用PowerShell或CMD)运行以下命令下载并运行模型: ```bash ollama run deepseek-r1:1.5b ``` 如果已经下载过,则可以直接使用。 ### 步骤2:安装必要的Python包 需要安装以下包: - `langchain`: 用于构建基于大语言模型的应用程序。 - `langchain-community`: 包含社区贡献的LangChain组件。 - `langgraph`: 用于构建具有状态的多步骤工作流(基于LangChain)。 - `ollama`: 用于与本地Ollama服务交互。 安装命令: ```bash pip install langgraph langchain langchain-community ollama ``` ### 步骤3:在LangChain中调用本地DeepSeek-R1模型 使用`langchain_community.llms`中的`Ollama`类来调用本地模型。 示例代码(LangChain基础调用): ```python from langchain_community.llms import Ollama # 创建Ollama实例,指定模型名称 llm = Ollama(model="deepseek-r1:1.5b") # 调用模型 response = llm.invoke("你好,请介绍一下你自己。") print(response) ``` ### 步骤4:在LangGraph中使用本地DeepSeek-R1模型 LangGraph用于构建有状态的多步骤工作流。我们可以将上述Ollama封装的LLM集成到LangGraph的节点中。 以下是一个简单的LangGraph示例,包含两个节点(一个节点调用模型,另一个节点处理结果)和一个边: ```python from langgraph.graph import END, StateGraph from langchain_community.llms import Ollama # 定义状态(State) # 这里我们定义一个简单的状态,包含一个字符串消息 class MyState: message: str # 初始化模型 llm = Ollama(model="deepseek-r1:1.5b") # 定义节点 def model_node(state: MyState): # 调用模型 response = llm.invoke(state.message) # 返回新的状态(更新消息) return {"message": response} def output_node(state: MyState): # 这里可以做一些后处理,比如打印或格式化 print("最终输出:", state.message) return state # 创建图 graph = StateGraph(MyState) # 添加节点 graph.add_node("model", model_node) graph.add_node("output", output_node) # 设置入口点 graph.set_entry_point("model") # 添加边 graph.add_edge("model", "output") graph.add_edge("output", END) # 编译图 app = graph.compile() # 使用图 inputs = {"message": "你好,请介绍一下你自己。"} app.invoke(inputs) ``` 注意:上述示例中,我们定义了一个简单的状态`MyState`,它只有一个字段`message`。然后我们定义了两个节点:`model_node`用于调用模型,`output_node`用于输出结果。图的结构是:从`model`节点开始,然后到`output`节点,最后结束。 ### 补充说明 1. 如果模型响应较慢,可以调整Ollama的调用参数,例如设置`temperature`等。 2. 在LangGraph中,可以根据需要设计更复杂的节点和边,例如条件分支、循环等。 通过以上步骤,就可以在LangGraph中使用本地部署的DeepSeek-R1模型了。 §§相关问题§§ 1. 如何优化Ollama调用本地模型的速度? 2. LangGraph中如何实现条件分支和循环? 3. 如何将本地部署的DeepSeek-R1模型与LangChain的其他组件(如记忆、检索等)结合使用?</think>### LangGraph/LangChain 集成本地 DeepSeek-R1 模型指南 根据引用内容[1][2][4],实现本地部署的 DeepSeek-R1 模型与 LangGraph/LangChain 集成,需按以下步骤操作: --- #### 一、安装依赖包 ```bash # 核心依赖 pip install langgraph langchain langchain-community # Ollama 集成 pip install ollama # 可选:结构化输出支持 pip install langchain-experimental ``` --- #### 二、模型部署与调用 ##### 1. 通过 Ollama 部署模型(引用[4]) ```bash # 下载模型(1.5B 蒸馏版) ollama run deepseek-r1:1.5b ``` ##### 2. LangChain 基础调用(引用[1]) ```python from langchain_community.llms import Ollama from langchain_core.prompts import ChatPromptTemplate # 初始化本地模型 llm = Ollama(model="deepseek-r1:1.5b") # 创建提示模板 prompt = ChatPromptTemplate.from_template("请回答:{query}") # 构建链式调用 chain = prompt | llm # 执行查询 response = chain.invoke({"query": "解释量子纠缠"}) print(response) ``` ##### 3. LangGraph 集成(引用[3]) ```python from langgraph.graph import StateGraph, END from langchain_community.chat_models import ChatOllama # 定义状态结构 class AgentState: question: str reasoning: str final_answer: str # 初始化本地模型 model = ChatOllama(model="deepseek-r1:1.5b", temperature=0) # 定义推理节点 def reasoning_node(state): response = model.invoke(f"请逐步推理:{state.question}") return {"reasoning": response.content} # 定义回答节点 def answer_node(state): response = model.invoke(f"基于推理给出最终答案:{state.reasoning}") return {"final_answer": response.content} # 构建图工作流 workflow = StateGraph(AgentState) workflow.add_node("reason", reasoning_node) workflow.add_node("answer", answer_node) workflow.set_entry_point("reason") workflow.add_edge("reason", "answer") workflow.add_edge("answer", END) app = workflow.compile() # 执行工作流 result = app.invoke({"question": "计算玻尔兹曼常数在热力学中的作用"}) print(result["final_answer"]) ``` --- #### 三、结构化输出实现(引用[3]) ```python from langchain_experimental.llms import JsonOutputParser from langchain_core.pydantic_v1 import BaseModel, Field # 定义输出结构 class PhysicsConcept(BaseModel): concept_name: str = Field(description="物理概念名称") mathematical_expression: str = Field(description="数学表达式") application: str = Field(description="主要应用领域") # 创建解析器 parser = JsonOutputParser(pydantic_object=PhysicsConcept) # 构建结构化调用链 structured_chain = ( ChatPromptTemplate.from_template("解释{concept},按JSON格式输出") | ChatOllama(model="deepseek-r1:1.5b") | parser ) # 执行查询 result = structured_chain.invoke({"concept": "薛定谔方程"}) print(result) # 输出示例: {'concept_name': '薛定谔方程', ...} ``` --- ### 关键配置说明 | 组件 | 配置项 | 推荐值 | 作用 | |------|--------|--------|------| | Ollama | `model` | `deepseek-r1:1.5b` | 指定1.5B蒸馏版模型 | | LangChain | `temperature` | `0.2-0.7` | 控制输出随机性 | | LangGraph | `checkpoint` | `InMemorySaver()` | 状态持久化存储 | | 结构化输出 | `JsonOutputParser` | 自定义Pydantic模型 | 强制JSON格式输出 | > 注:首次运行时模型下载需较长时间(约5-10分钟),后续调用响应在1-5秒内[^2][^4] --- ### 性能优化建议 1. **批处理请求**:使用`batch()`方法并行处理多个查询 ```python responses = llm.batch(["问题1", "问题2"]) ``` 2. **上下文管理**:集成`ConversationBufferMemory`维护对话历史 3. **硬件加速**:在Ollama启动时添加GPU标志(需NVIDIA驱动) ```bash ollama serve --gpu ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值