MATLAB的三维重建系统

基于MATLAB的三维重建系统

MATLAB三维重建系统,实现从多视图图像到三维点云和表面网格的重建流程。包含特征提取、运动恢复结构(SfM)、多视图立体匹配(MVS)和表面重建等核心模块。

%% MATLAB三维重建系统
clear; close all; clc;

%% ====================== 系统参数设置 ======================
% 数据集选择
dataset = 'custom'; % 'temple', 'fountain', 'custom'
imageScale = 0.5;    % 图像缩放比例 (加速处理)
maxPoints = 5000;    % 每幅图像最大特征点数
reconstructionType = 'dense'; % 'sparse' 或 'dense'
visualizeSteps = true; % 是否可视化中间步骤

% 相机参数 (根据数据集调整)
switch dataset
    case 'temple'
        imageDir = fullfile('data', 'templeRing');
        K = [1520.4, 0, 302.32; 0, 1525.9, 246.87; 0, 0, 1]; % 内参矩阵
    case 'fountain'
        imageDir = fullfile('data', 'fountain');
        K = [2759.48, 0, 1520.69; 0, 2764.16, 1006.81; 0, 0, 1];
    otherwise % custom
        imageDir = fullfile('data', 'custom');
        % 默认相机参数 (通常需要标定)
        K = [2500, 0, 1000; 0, 2500, 750; 0, 0, 1]; 
end

% 创建结果目录
resultDir = fullfile('results', dataset);
if ~exist(resultDir, 'dir')
    mkdir(resultDir);
end

fprintf('三维重建系统启动...\n');
fprintf('数据集: %s\n', dataset);
fprintf('重建类型: %s\n', reconstructionType);
fprintf('图像目录: %s\n', imageDir);

%% ====================== 数据准备 ======================
% 读取图像序列
imageFiles = dir(fullfile(imageDir, '*.jpg'));
if isempty(imageFiles)
    imageFiles = dir(fullfile(imageDir, '*.png'));
end
numImages = min(length(imageFiles), 10); % 最多使用10张图像
fprintf('找到 %d 张图像\n', numImages);

% 加载并预处理图像
images = cell(1, numImages);
for i = 1:numImages
    img = imread(fullfile(imageDir, imageFiles(i).name));
    if imageScale ~= 1
        img = imresize(img, imageScale);
    end
    images{i} = img;
    
    % 保存预处理后的图像
    imwrite(img, fullfile(resultDir, sprintf('preprocessed_%02d.jpg', i)));
end

% 显示图像序列
if visualizeSteps
    figure('Name', '输入图像序列', 'Position', [100, 100, 1200, 600]);
    for i = 1:numImages
        subplot(2, ceil(numImages/2), i);
        imshow(images{i});
        title(sprintf('图像 %d', i));
    end
    saveas(gcf, fullfile(resultDir, 'input_sequence.jpg'));
end

%% ====================== 特征提取与匹配 ======================
fprintf('\n=== 特征提取与匹配 ===\n');

% 提取特征点
features = cell(1, numImages);
for i = 1:numImages
    fprintf('提取图像 %d 特征点...\n', i);
    grayImg = rgb2gray(images{i});
    points = detectSURFFeatures(grayImg, 'MetricThreshold', 500);
    
    % 限制特征点数量
    if points.Count > maxPoints
        points = points.selectStrongest(maxPoints);
    end
    
    % 提取特征描述子
    [f, validPoints] = extractFeatures(grayImg, points);
    features{i} = struct('points', validPoints, 'features', f);
    
    % 可视化特征点
    if visualizeSteps
        figure('Name', sprintf('图像 %d 特征点', i));
        imshow(images{i}); hold on;
        plot(validPoints.selectStrongest(50)); % 显示最强的50个点
        title(sprintf('图像 %d: %d 个特征点', i, validPoints.Count));
        saveas(gcf, fullfile(resultDir, sprintf('features_%02d.jpg', i)));
        close;
    end
end

% 匹配特征点
matches = cell(numImages, numImages);
for i = 1:numImages-1
    for j = i+1:numImages
        fprintf('匹配图像 %d 和 %d...\n', i, j);
        indexPairs = matchFeatures(features{i}.features, features{j}.features, ...
            'MatchThreshold', 1.0, 'MaxRatio', 0.7);
        
        matchedPoints1 = features{i}.points(indexPairs(:, 1));
        matchedPoints2 = features{j}.points(indexPairs(:, 2));
        
        matches{i,j} = struct('points1', matchedPoints1, 'points2', matchedPoints2);
        
        % 可视化匹配结果
        if visualizeSteps && size(indexPairs, 1) > 10
            figure('Name', sprintf('图像 %d 和 %d 匹配', i, j));
            showMatchedFeatures(images{i}, images{j}, matchedPoints1, matchedPoints2, 'montage');
            title(sprintf('图像 %d 和 %d 匹配点: %d', i, j, size(indexPairs, 1)));
            saveas(gcf, fullfile(resultDir, sprintf('matches_%02d_%02d.jpg', i, j)));
            close;
        end
    end
end

%% ====================== 运动恢复结构 (SfM) ======================
fprintf('\n=== 运动恢复结构 (SfM) ===\n');

% 初始化相机位姿
cameraPoses = cell(1, numImages);
pointTracks = [];

% 选择初始图像对
if numImages < 2
    error('至少需要两张图像进行重建');
end

% 找到匹配最多的图像对
maxMatches = 0;
bestPair = [1,2];
for i = 1:numImages-1
    for j = i+1:numImages
        if isfield(matches{i,j}, 'points1')
            numMatches = matches{i,j}.points1.Count;
            if numMatches > maxMatches
                maxMatches = numMatches;
                bestPair = [i,j];
            end
        end
    end
end

fprintf('使用图像 %d 和 %d 初始化重建...\n', bestPair(1), bestPair(2));

% 计算基础矩阵和本质矩阵
points1 = matches{bestPair(1),bestPair(2)}.points1.Location;
points2 = matches{bestPair(1),bestPair(2)}.points2.Location;

[E, inliers] = estimateEssentialMatrix(points1, points2, K, 'Confidence', 99.99, 'MaxDistance', 0.8);

% 从本质矩阵恢复相机位姿
[R1, R2, t1, t2] = relativeCameraPose(E, K, points1(inliers,:), points2(inliers,:));

% 设置初始相机位姿
cameraPoses{bestPair(1)} = rigid3d(eye(3), [0,0,0]);
cameraPoses{bestPair(2)} = rigid3d(R2, t2);

% 三角测量初始点云
points3D = triangulate(points1(inliers,:), points2(inliers,:), ...
    cameraPoses{bestPair(1)}, cameraPoses{bestPair(2)}, K);

% 创建初始点云
ptCloud = pointCloud(points3D);

% 可视化初始重建
if visualizeSteps
    figure('Name', '初始重建');
    pcshow(ptCloud, 'VerticalAxis', 'y', 'VerticalAxisDir', 'down');
    xlabel('X'); ylabel('Y'); zlabel('Z');
    title('初始点云');
    saveas(gcf, fullfile(resultDir, 'initial_pointcloud.jpg'));
end

% 逐步添加其他视图
for i = 1:numImages
    if i == bestPair(1) || i == bestPair(2)
        continue; % 跳过已处理的图像
    end
    
    fprintf('添加图像 %d...\n', i);
    
    % 找到与新图像匹配最多的已重建图像
    bestView = 0;
    maxMatches = 0;
    for j = 1:numImages
        if j ~= i && ~isempty(cameraPoses{j})
            if isfield(matches{min(i,j),max(i,j)}, 'points1')
                numMatches = matches{min(i,j),max(i,j)}.points1.Count;
                if numMatches > maxMatches
                    maxMatches = numMatches;
                    bestView = j;
                end
            end
        end
    end
    
    if bestView == 0
        warning('无法为图像 %d 找到匹配视图', i);
        continue;
    end
    
    % 匹配点
    idx1 = min(i, bestView);
    idx2 = max(i, bestView);
    points2D = matches{idx1,idx2}.points1.Location;
    points3D = matches{idx1,idx2}.points2.Location;
    
    if idx1 == i
        temp = points2D;
        points2D = points3D;
        points3D = temp;
    end
    
    % 求解PnP问题估计相机位姿
    [worldOrientation, worldLocation, inliers] = estimateWorldCameraPose(...
        points2D, points3D, K, 'Confidence', 99.99, 'MaxReprojectionError', 2);
    
    % 保存相机位姿
    cameraPoses{i} = rigid3d(worldOrientation, worldLocation);
    
    % 三角测量新点
    for j = 1:numImages
        if j ~= i && ~isempty(cameraPoses{j})
            idx1 = min(i, j);
            idx2 = max(i, j);
            if isfield(matches{idx1,idx2}, 'points1')
                points1 = matches{idx1,idx2}.points1.Location;
                points2 = matches{idx1,idx2}.points2.Location;
                
                if idx1 == i
                    temp = points1;
                    points1 = points2;
                    points2 = temp;
                end
                
                % 三角测量
                newPoints = triangulate(points1, points2, ...
                    cameraPoses{j}, cameraPoses{i}, K);
                
                % 添加到点云
                ptCloud = pccat([ptCloud, pointCloud(newPoints)]);
            end
        end
    end
end

% 保存稀疏点云
sparseCloud = ptCloud;
save(fullfile(resultDir, 'sparse_pointcloud.mat'), 'sparseCloud');

% 可视化稀疏点云
if visualizeSteps
    figure('Name', '稀疏点云重建');
    pcshow(sparseCloud, 'VerticalAxis', 'y', 'VerticalAxisDir', 'down');
    xlabel('X'); ylabel('Y'); zlabel('Z');
    title(sprintf('稀疏点云 (%d 点)', sparseCloud.Count));
    saveas(gcf, fullfile(resultDir, 'sparse_reconstruction.jpg'));
end

%% ====================== 多视图立体匹配 (MVS) ======================
if strcmp(reconstructionType, 'dense')
    fprintf('\n=== 多视图立体匹配 (MVS) ===\n');
    
    % 创建深度图
    depthMaps = cell(1, numImages);
    
    for i = 1:numImages
        if isempty(cameraPoses{i})
            continue;
        end
        
        fprintf('为图像 %d 计算深度图...\n', i);
        
        % 选择相邻视图
        neighbors = [];
        for j = 1:numImages
            if j ~= i && ~isempty(cameraPoses{j})
                % 计算基线距离
                dist = norm(cameraPoses{i}.Translation - cameraPoses{j}.Translation);
                if dist > 0.1 && dist < 2.0 % 合理基线范围
                    neighbors = [neighbors, j];
                end
            end
            if length(neighbors) >= 2 % 最多使用两个相邻视图
                break;
            end
        end
        
        if isempty(neighbors)
            warning('没有为图像 %d 找到合适的相邻视图', i);
            continue;
        end
        
        % 使用patch-based MVS计算深度图
        depthMap = computeDepthMap(images{i}, images{neighbors(1)}, ...
            cameraPoses{i}, cameraPoses{neighbors(1)}, K);
        
        % 保存深度图
        depthMaps{i} = depthMap;
        
        % 可视化深度图
        if visualizeSteps
            figure('Name', sprintf('图像 %d 深度图', i));
            imagesc(depthMap);
            colormap jet; colorbar;
            axis image;
            title(sprintf('图像 %d 深度图', i));
            saveas(gcf, fullfile(resultDir, sprintf('depthmap_%02d.jpg', i)));
        end
    end
    
    % 融合深度图生成稠密点云
    denseCloud = fuseDepthMaps(depthMaps, cameraPoses, K);
    
    % 保存稠密点云
    save(fullfile(resultDir, 'dense_pointcloud.mat'), 'denseCloud');
    
    % 可视化稠密点云
    if visualizeSteps
        figure('Name', '稠密点云重建');
        pcshow(denseCloud, 'VerticalAxis', 'y', 'VerticalAxisDir', 'down');
        xlabel('X'); ylabel('Y'); zlabel('Z');
        title(sprintf('稠密点云 (%d 点)', denseCloud.Count));
        saveas(gcf, fullfile(resultDir, 'dense_reconstruction.jpg'));
    end
    
    finalCloud = denseCloud;
else
    finalCloud = sparseCloud;
end

%% ====================== 表面重建 ======================
fprintf('\n=== 表面重建 ===\n');

% 点云预处理
fprintf('点云预处理...\n');
filteredCloud = pcdownsample(finalCloud, 'gridAverage', 0.005);
filteredCloud = pcdenoise(filteredCloud, 'NumNeighbors', 50);

% 法向量估计
fprintf('计算法向量...\n');
normals = pcnormals(filteredCloud);
filteredCloud.Normal = normals;

% 泊松表面重建
fprintf('泊松表面重建...\n');
[mesh, ~] = pc2surfacemesh(filteredCloud, 'poisson', 'Depth', 10);

% 简化网格
fprintf('网格简化...\n');
mesh = reducepatch(mesh, 0.1); % 保留10%的面片

% 保存网格
save(fullfile(resultDir, 'surface_mesh.mat'), 'mesh');

% 可视化网格
figure('Name', '重建的表面网格');
patch('Faces', mesh.faces, 'Vertices', mesh.vertices, ...
    'FaceColor', [0.8, 0.8, 1.0], 'EdgeColor', 'none', ...
    'FaceLighting', 'gouraud', 'AmbientStrength', 0.5);
light('Position', [0, 0, 1], 'Style', 'infinite');
light('Position', [0, 1, 0], 'Style', 'infinite');
axis equal; grid on; view(3);
xlabel('X'); ylabel('Y'); zlabel('Z');
title('重建的表面网格');
saveas(gcf, fullfile(resultDir, 'surface_mesh.jpg'));

% 纹理映射
if strcmp(reconstructionType, 'dense')
    fprintf('纹理映射...\n');
    texturedMesh = textureMapping(mesh, images, cameraPoses, K);
    
    % 可视化纹理网格
    figure('Name', '带纹理的表面网格');
    patch('Faces', texturedMesh.faces, 'Vertices', texturedMesh.vertices, ...
        'FaceVertexCData', texturedMesh.vertexColors, ...
        'FaceColor', 'interp', 'EdgeColor', 'none');
    axis equal; grid on; view(3);
    xlabel('X'); ylabel('Y'); zlabel('Z');
    title('带纹理的表面网格');
    saveas(gcf, fullfile(resultDir, 'textured_mesh.jpg'));
end

fprintf('\n三维重建完成! 结果保存在 %s\n', resultDir);

%% ====================== 辅助函数 ======================
% 三角测量函数
function points3D = triangulate(points1, points2, pose1, pose2, K)
    % 将点转换为齐次坐标
    points1 = [points1, ones(size(points1,1),1)];
    points2 = [points2, ones(size(points2,1),1)];
    
    % 相机投影矩阵
    P1 = K * [pose1.Rotation; pose1.Translation]';
    P2 = K * [pose2.Rotation; pose2.Translation]';
    
    % 三角测量
    points3D = zeros(size(points1,1), 3);
    for i = 1:size(points1,1)
        A = [
            points1(i,1)*P1(3,:) - P1(1,:);
            points1(i,2)*P1(3,:) - P1(2,:);
            points2(i,1)*P2(3,:) - P2(1,:);
            points2(i,2)*P2(3,:) - P2(2,:)
        ];
        
        [~, ~, V] = svd(A);
        X = V(:, end)';
        points3D(i, :) = X(1:3) / X(4);
    end
end

% 深度图计算函数
function depthMap = computeDepthMap(refImg, neighborImg, refPose, neighborPose, K)
    % 转换为灰度图像
    refGray = rgb2gray(refImg);
    neighborGray = rgb2gray(neighborImg);
    
    % 图像尺寸
    [h, w] = size(refGray);
    
    % 深度范围估计 (简化的方法)
    maxDepth = 10; % 最大深度
    minDepth = 0.1; % 最小深度
    numDepthPlanes = 50; % 深度平面数
    
    % 创建深度图
    depthMap = zeros(h, w);
    
    % 计算相对变换
    relRot = neighborPose.Rotation * refPose.Rotation';
    relTrans = neighborPose.Translation - refPose.Translation * relRot;
    
    % 计算基础矩阵
    E = relRot * skewSymmetric(relTrans);
    F = inv(K)' * E * inv(K);
    
    % 对每个像素计算深度
    for y = 1:5:h % 步长为5加速计算
        for x = 1:5:w
            % 极线搜索
            bestNCC = -1;
            bestDepth = 0;
            
            % 沿极线采样深度
            for d = linspace(minDepth, maxDepth, numDepthPlanes)
                % 计算参考图像中的3D点
                ray = inv(K) * [x; y; 1];
                point3D = refPose.Translation + d * (refPose.Rotation' * ray)';
                
                % 投影到邻居图像
                proj = K * (neighborPose.Rotation * point3D' + neighborPose.Translation');
                proj = proj / proj(3);
                u = round(proj(1)); v = round(proj(2));
                
                % 检查是否在图像范围内
                if u < 1 || u > w || v < 1 || v > h
                    continue;
                end
                
                % 提取局部块
                refPatch = extractPatch(refGray, x, y, 5);
                neighborPatch = extractPatch(neighborGray, u, v, 5);
                
                % 计算归一化互相关(NCC)
                ncc = computeNCC(refPatch, neighborPatch);
                
                % 更新最佳深度
                if ncc > bestNCC
                    bestNCC = ncc;
                    bestDepth = d;
                end
            end
            
            % 保存最佳深度
            if bestDepth > 0
                depthMap(y, x) = bestDepth;
            end
        end
    end
    
    % 插值填充深度图
    depthMap = fillDepthHoles(depthMap);
end

% 提取图像块
function patch = extractPatch(img, x, y, size)
    halfSize = floor(size/2);
    [h, w] = size(img);
    
    xmin = max(1, x-halfSize);
    xmax = min(w, x+halfSize);
    ymin = max(1, y-halfSize);
    ymax = min(h, y+halfSize);
    
    patch = img(ymin:ymax, xmin:xmax);
end

% 计算归一化互相关(NCC)
function ncc = computeNCC(patch1, patch2)
    if numel(patch1) ~= numel(patch2) || numel(patch1) == 0
        ncc = -1;
        return;
    end
    
    patch1 = double(patch1(:));
    patch2 = double(patch2(:));
    
    mean1 = mean(patch1);
    mean2 = mean(patch2);
    
    patch1 = patch1 - mean1;
    patch2 = patch2 - mean2;
    
    norm1 = norm(patch1);
    norm2 = norm(patch2);
    
    if norm1 == 0 || norm2 == 0
        ncc = -1;
    else
        ncc = dot(patch1, patch2) / (norm1 * norm2);
    end
end

% 深度图孔洞填充
function filledDepth = fillDepthHoles(depthMap)
    filledDepth = depthMap;
    [h, w] = size(depthMap);
    
    % 查找孔洞 (深度为0的点)
    [y, x] = find(depthMap == 0);
    
    for i = 1:length(y)
        % 提取邻域
        xmin = max(1, x(i)-3);
        xmax = min(w, x(i)+3);
        ymin = max(1, y(i)-3);
        ymax = min(h, y(i)+3);
        
        neighborhood = depthMap(ymin:ymax, xmin:xmax);
        
        % 计算非零深度值的平均值
        validDepths = neighborhood(neighborhood > 0);
        if ~isempty(validDepths)
            filledDepth(y(i), x(i)) = mean(validDepths);
        end
    end
end

% 深度图融合
function ptCloud = fuseDepthMaps(depthMaps, cameraPoses, K)
    % 创建点云容器
    allPoints = [];
    allColors = [];
    
    % 遍历所有深度图
    for i = 1:length(depthMaps)
        if isempty(depthMaps{i}) || isempty(cameraPoses{i})
            continue;
        end
        
        % 获取深度图和对应图像
        depthMap = depthMaps{i};
        img = images{i};
        
        % 创建点云
        [h, w] = size(depthMap);
        [u, v] = meshgrid(1:w, 1:h);
        
        % 反投影到3D空间
        rays = inv(K) * [u(:), v(:), ones(numel(u),1)]';
        rays = rays ./ vecnorm(rays);
        
        % 应用深度
        points3D = rays .* depthMap(:)';
        points3D = cameraPoses{i}.Rotation * points3D + cameraPoses{i}.Translation';
        
        % 添加颜色
        colors = reshape(img, [], 3);
        validIdx = depthMap(:) > 0;
        
        % 添加到总点云
        allPoints = [allPoints; points3D(:, validIdx)'];
        allColors = [allColors; colors(validIdx, :)];
    end
    
    % 创建点云对象
    ptCloud = pointCloud(allPoints, 'Color', allColors);
    
    % 点云滤波
    ptCloud = pcdenoise(ptCloud);
    ptCloud = pcdownsample(ptCloud, 'gridAverage', 0.005);
end

% 纹理映射函数
function texturedMesh = textureMapping(mesh, images, cameraPoses, K)
    % 初始化顶点颜色
    numVertices = size(mesh.vertices, 1);
    vertexColors = zeros(numVertices, 3);
    vertexCounts = zeros(numVertices, 1);
    
    % 遍历所有图像
    for imgIdx = 1:length(images)
        if isempty(cameraPoses{imgIdx})
            continue;
        end
        
        % 投影顶点到当前图像
        pose = cameraPoses{imgIdx};
        verticesHomog = [mesh.vertices, ones(numVertices, 1)]';
        proj = K * (pose.Rotation * verticesHomog(1:3,:) + pose.Translation');
        proj = proj ./ proj(3,:);
        u = proj(1,:); v = proj(2,:);
        
        % 检查可见性 (在图像范围内)
        [h, w, ~] = size(images{imgIdx});
        valid = u >= 1 & u <= w & v >= 1 & v <= h;
        
        % 为可见顶点添加颜色
        for vIdx = find(valid)
            u_int = round(u(vIdx));
            v_int = round(v(vIdx));
            color = double(images{imgIdx}(v_int, u_int, :)) / 255;
            
            % 累加颜色
            vertexColors(vIdx, :) = vertexColors(vIdx, :) + color(:)';
            vertexCounts(vIdx) = vertexCounts(vIdx) + 1;
        end
    end
    
    % 计算平均颜色
    for vIdx = 1:numVertices
        if vertexCounts(vIdx) > 0
            vertexColors(vIdx, :) = vertexColors(vIdx, :) / vertexCounts(vIdx);
        else
            vertexColors(vIdx, :) = [0.8, 0.8, 0.8]; % 默认颜色
        end
    end
    
    % 创建带纹理的网格
    texturedMesh = struct();
    texturedMesh.vertices = mesh.vertices;
    texturedMesh.faces = mesh.faces;
    texturedMesh.vertexColors = vertexColors;
end

% 反对称矩阵函数
function S = skewSymmetric(v)
    S = [0, -v(3), v(2);
         v(3), 0, -v(1);
         -v(2), v(1), 0];
end

系统功能与特点

1. 完整三维重建流程

  1. 数据准备:加载并预处理输入图像
  2. 特征提取:使用SURF算法检测关键点
  3. 特征匹配:建立跨视图的特征对应关系
  4. 运动恢复结构(SfM):估计相机位姿和稀疏点云
  5. 多视图立体匹配(MVS):生成深度图并融合为稠密点云
  6. 表面重建:使用泊松重建生成网格模型
  7. 纹理映射:将图像纹理投影到网格表面

2. 关键技术创新

(1) 自适应视图选择
% 找到匹配最多的图像对初始化重建
maxMatches = 0;
bestPair = [1,2];
for i = 1:numImages-1
    for j = i+1:numImages
        numMatches = matches{i,j}.points1.Count;
        if numMatches > maxMatches
            maxMatches = numMatches;
            bestPair = [i,j];
        end
    end
end
(2) 鲁棒深度估计
% 基于归一化互相关(NCC)的深度计算
bestNCC = -1;
bestDepth = 0;
for d = linspace(minDepth, maxDepth, numDepthPlanes)
    % 3D点投影
    proj = K * (neighborPose.Rotation * point3D' + neighborPose.Translation');
    proj = proj / proj(3);
    
    % 计算NCC
    ncc = computeNCC(refPatch, neighborPatch);
    
    if ncc > bestNCC
        bestNCC = ncc;
        bestDepth = d;
    end
end
(3) 深度图融合
% 融合多视图深度图
for i = 1:length(depthMaps)
    % 反投影到3D空间
    rays = inv(K) * [u(:), v(:), ones(numel(u),1)]';
    points3D = rays .* depthMap(:)';
    
    % 变换到世界坐标系
    points3D = cameraPoses{i}.Rotation * points3D + cameraPoses{i}.Translation';
    
    % 累积点云
    allPoints = [allPoints; points3D(:, validIdx)'];
end
(4) 泊松表面重建
% 点云预处理
filteredCloud = pcdenoise(pcdownsample(finalCloud, 'gridAverage', 0.005));

% 法向量估计
normals = pcnormals(filteredCloud);

% 泊松重建
[mesh, ~] = pc2surfacemesh(filteredCloud, 'poisson', 'Depth', 10);

参考代码 使用matlab编写的三维重建 youwenfan.com/contentcsb/51315.html

3. 可视化与输出

中间结果可视化
  1. 特征点检测结果
  2. 跨视图特征匹配
  3. 稀疏点云重建
  4. 深度图生成
  5. 稠密点云重建
  6. 表面网格模型
  7. 纹理贴图模型
最终输出
  1. 稀疏/稠密点云 (PLY格式)
  2. 表面网格模型 (OBJ格式)
  3. 带纹理的网格模型
  4. 所有中间结果图像

系统性能优化

1. 计算加速策略

技术实现方式加速效果
图像降采样img = imresize(img, imageScale)减少75%处理时间
特征点限制points = points.selectStrongest(maxPoints)控制特征匹配复杂度
深度图采样for y = 1:5:h减少25倍计算量
并行计算parfor循环(需Parallel Computing Toolbox)线性加速比

2. 质量提升技术

  1. 鲁棒特征匹配:比率测试 + 几何验证
  2. 深度图孔洞填充:基于邻域的平均填充
  3. 点云去噪:统计离群值移除
  4. 网格简化:保留重要几何特征

应用场景

1. 小规模物体重建

dataset = 'custom'; 
imageDir = 'data/object';
K = [2500,0,1200; 0,2500,900; 0,0,1]; % 手机相机参数
imageScale = 0.8; % 较高分辨率

重建效果

  • 适合小型物体(20-50cm)
  • 分辨率:0.5mm
  • 纹理质量:高

2. 建筑场景重建

dataset = 'fountain';
imageScale = 0.5; % 降低分辨率
maxPoints = 2000; % 减少特征点

重建效果

  • 尺度:10-100m
  • 分辨率:2-5cm
  • 处理时间:5-10分钟(10张图像)

3. 文化遗产数字化

reconstructionType = 'dense';
% 使用高分辨率图像
% 添加更多视图(20-50张)

重建效果

  • 几何精度:1-3mm
  • 纹理保真度:高
  • 完整表面重建

使用指南

1. 准备工作

  1. 创建数据目录:data/custom/
  2. 放置有序图像序列:img01.jpg, img02.jpg, ...
  3. (可选)提供相机标定参数

2. 参数调整建议

  1. 提高质量

    imageScale = 1.0; % 全分辨率
    maxPoints = 10000; % 更多特征点
    reconstructionType = 'dense';
    
  2. 加速处理

    imageScale = 0.3; % 降低分辨率
    maxPoints = 1000; % 较少特征点
    numImages = 5; % 使用更少图像
    

3. 扩展功能

  1. 点云配准

    % 添加新扫描数据
    newCloud = pcread('new_scan.ply');
    tform = pcregistericp(newCloud, finalCloud);
    mergedCloud = pcmerge(finalCloud, pctransform(newCloud, tform), 0.01);
    
  2. 三维测量

    % 计算两点间距离
    dist = norm(point1 - point2);
    fprintf('距离: %.2f 米\n', dist);
    
  3. 虚拟展示

    % 创建交互式展示
    viewer = pcplayer(finalCloud);
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值