01背包问题——dfs(深度优先搜索)做法

该文介绍了01背包问题,给定背包容量和多个物品的重量与价值,目标是求解最大总价值。使用深度优先搜索(DFS)策略,通过递归遍历所有可能的选择组合,找到最大价值。当物品加入后不超过背包容量时,更新最大价值并继续搜索。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:

01背包问题

时间限制:1秒        内存限制:128M

题目描述

一个旅行者有一个最多能装 M 公斤的背包,现在有 n 件物品,它们的重量分别是 W1W2,...,Wn ,它们的价值分别为 C1 , C2 ,..., Cn ,求旅行者能获得最大总价值。

输入描述

第一行:两个整数,M (背包容量,M≤200 )和 N (物品数量, N≤30 );
第 2..N+1 行:每行二个整数 Wi,Ci ,表示每个物品的重量和价值。

输出描述

仅一行,一个数,表示最大总价值。

样例

输入

10 4
2 1
3 3
4 5
7 9

输出

12

思路:

1、输入

2、dfs

3、输出最大值

dfs{

1、三个参数,下标,占背包容量、总价

2、结束条件(下标==数量+1)

3、两种情况    {

                        1、选{

                                1、如果加上小于或等于容量{

                                                                                1、求解最大值

                                                                                2、继续dfs;

                                              }

                                }

                        2、不选{

                                        1、dfs继续搜索下一个

                         }

           }

}

我们可以画出一个二叉树

 代码如下:

 

#include<bits/stdc++.h>
using namespace std;
#define int long long
int cnt=0,c[100005],w[100005];
int m,n;
void dfs(int t,int sumc,int sumv){
	if(t==n+1) return;
	dfs(t+1,sumc,sumv);
	if(sumc+w[t]<=m){
		cnt=max(cnt,sumv+c[t]);
		dfs(t+1,sumc+w[t],sumv+c[t]);
	}
}
signed main(){
	cin>>m>>n;
	for(int i=1; i<=n; i++){
		cin>>w[i]>>c[i];
	}
	dfs(1,0,0);
	cout<<cnt;
	return 0;
}

### 使用深度优先搜索DFS)解决0-1背包问题 对于0-1背包问题,当采用深度优先搜索DFS)方法求解时,主要通过遍历所有可能的选择组合来寻找最优解。这种方法基于回溯的思想,在每一步尝试两种可能性——要么选取当前物品放入背包中,要么不选它继续考虑下一个物品。 具体来说,可以从根节点出发构建一棵决策树,其中每个分支代表一次选择操作;左孩子表示取走第 i 件商品并更新剩余空间和总价值;右孩子则意味着放弃这件商品保持原有状态不变。随着递归深入到叶结点处评估路径上的累积收益情况,并记录下最大值得以最终输出作为结果[^2]。 以下是利用Python编写的简单版本的DFS实现: ```python def dfs_knapsack(weights, values, capacity): n = len(weights) def backtrack(i=0, current_weight=0, total_value=0): nonlocal max_value # 如果超重,则剪枝 if current_weight > capacity: return # 更新全局最大值 max_value = max(max_value, total_value) # 遍历每一个物品 for j in range(i, n): # 尝试加入新物品 backtrack(j + 1, current_weight + weights[j], total_value + values[j]) max_value = 0 backtrack() return max_value ``` 此函数接收三个参数:`weights` 表示各物件的质量列表,`values` 是对应的价值列表,以及 `capacity` 定义了背包的最大承重能力。内部定义了一个辅助性的闭包函数 `backtrack()` 来执行具体的迭代过程。注意这里为了简化逻辑并没有显式地维护一个栈结构而是依赖于 Python 的调用堆栈机制完成回退动作[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Programming_Konjac

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值