题目描述
2,3,5,7,11,13,… 是素数序列。 类似:7,37,67,97,127,1577,37,67,97,127,157 这样完全由素数组成的等差数列,叫等差素数数列。
上边的数列公差为 3030,长度为 66。
20042004 年,格林与华人陶哲轩合作证明了:存在任意长度的素数等差数列。 这是数论领域一项惊人的成果!
有这一理论为基础,请你借助手中的计算机,满怀信心地搜索:
长度为 1010 的等差素数列,其公差最小值是多少?
解题思路
①列出一个素数数组(50000个)
②在素数数组中进行两层循环枚举
- 第一层循环:枚举首项
- 第二层循环枚举公差,并记录枚举个数
代码
#include<algorithm>
#include<iostream>
#inlcude<set>
using namespace std;
typedef long long LL;//使用LL防止后期素数过大越界
set<int> all;
bool isPrime(LL t){
for(int i = 2;i < t/2; i++){
if(t % i == 0)return false;
}
return true;
}
int f(LL a[],int n)
{
for(int i = 0;i < n; i++){//枚举首项
LL first = a[i];
for(int delta = 1;delta < a[n-1]-first; ++delta){
int m = first;
for(int j = 1;j < 10; j++){
m += delta;
if(all.find(m) == all.end())//不是素数
{
break;
}
if(m > a[n - 1])break;
if(j == 9)//已经找到10项
{
return delta;
}
}
}
}
return -1;
}
const int N = 5000;
LL a[N];
int main(int argc, const char *argv[]){
int index = 0;
a[0] = 2;
a[1] = 3;
all.insert(2);
all.insert(3);
int index = 2;
LL t = 5;
while(index < N){
if(isPrime(t)){//判断是否为素数,是就放入数组
a[index++] = t;
all.insert(t);
}
t++;
}
cout<<f(a,N)<<endl;
return 0;
}