等差素数列

该博客介绍了等差素数数列的概念,并讲述了如何利用算法寻找长度为1010的等差素数数列。博主首先列出一个包含50000个素数的数组,然后通过两层循环枚举首项和公差,寻找满足条件的等差素数序列,探讨了格林和陶哲轩关于素数等差数列的数学证明在解决问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

2,3,5,7,11,13,… 是素数序列。 类似:7,37,67,97,127,1577,37,67,97,127,157 这样完全由素数组成的等差数列,叫等差素数数列。

上边的数列公差为 3030,长度为 66。

20042004 年,格林与华人陶哲轩合作证明了:存在任意长度的素数等差数列。 这是数论领域一项惊人的成果!

有这一理论为基础,请你借助手中的计算机,满怀信心地搜索:

长度为 1010 的等差素数列,其公差最小值是多少?

解题思路

①列出一个素数数组(50000个)

②在素数数组中进行两层循环枚举

  • 第一层循环:枚举首项
  • 第二层循环枚举公差,并记录枚举个数

代码

#include<algorithm>
#include<iostream>
#inlcude<set>
using namespace std;
typedef long long LL;//使用LL防止后期素数过大越界
set<int> all;
bool isPrime(LL t){
	for(int i = 2;i < t/2; i++){
		if(t % i == 0)return false;
	}
	return true;
}
int f(LL a[],int n)
{
	for(int i = 0;i < n; i++){//枚举首项
		LL first = a[i];
		for(int delta = 1;delta < a[n-1]-first; ++delta){
			int m = first;
			for(int j = 1;j < 10; j++){
				m += delta;
				if(all.find(m) == all.end())//不是素数
				{
					break;
				}
				if(m > a[n - 1])break;
				if(j == 9)//已经找到10项
				{
					return delta;
				}
			}
		}
	}
	return -1;
}
const int N = 5000;

LL a[N];
int main(int argc, const char *argv[]){

	int index = 0;
	a[0] = 2;
	a[1] = 3;
	all.insert(2);
	all.insert(3);
	int index = 2;
	LL t = 5;
	while(index < N){
		if(isPrime(t)){//判断是否为素数,是就放入数组
			a[index++] = t;
			all.insert(t);
		}
		t++;
	}
	cout<<f(a,N)<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值