C++后端编程 构建高性能后端的数据库、API 与 Web 服务器 3 深入解析算法

算法概述

后端系统的整体功能和效率水平在很大程度上受其底层算法的驱动。 算法是明确定义的指令集,能够为特定问题或任务提供解决方案。 在网站后端编程中,包括数据库管理、请求处理和数据操作在内的每一项任务,都由相应的算法驱动执行。
算法的开发过程对其实现后的效率和可靠性具有重大影响。 使用高效算法可以缩短响应时间并减轻服务器负载。 相反,设计不当的算法会导致资源利用效率低下,进而造成响应延迟甚至系统故障。 因此,构建结构良好且高效的算法是后端开发人员的核心技能。
在大型数据库中查找特定数据是后端开发中的常见任务。 线性搜索算法是最直接的方法,只需简单遍历整个数据库即可。 然而,如果数据库包含数百万条记录,这种策略显然效率低下。 在这种情况下,二分搜索或基于哈希的搜索等更复杂的算法可以显著提升性能。 它们巧妙地减少了所需操作次数,从而降低服务器负载并改善响应时间。 数据组织是后端编程的另一个关键要素。 高效排序算法适用于多种场景,包括按姓名排序用户记录、按日期排序交易记录以及按价格排序产品等。 与 BubbleSort 和 InsertionSort 等较为简单的算法相比,QuickSort、MergeSort 或 HeapSort 等更复杂的排序程序能够有效处理大型数据集,在更短时间内提供排序结果并减少资源消耗。
此外,算法还能协助解决后端编程中出现的复杂问题。 以负载均衡为例,该技术旨在将网络流量分配到多台服务器上,防止单台服务器过载。 此时算法可通过定义负载分配规则发挥作用, 既可采用简单的轮询方式,也能使用更复杂的"最少连接数"策略,甚至能基于机器学习实现预测性分配。 在需要同步执行多个任务的并发处理场景中,算法负责管理这些任务的执行顺序、同步协调及具体实施。 它们确保任务按正确顺序完成,资源得到高效利用,且各任务互不干扰,从而使后端系统能够平稳高效地运行。
在开发后端软件的过程中,算法的重要性怎么强调都不为过。 它们是构建高效、可靠且可扩展的后端系统的骨架结构。 算法将复杂问题分解为可执行任务,为开发人员构建健壮且优化的后端解决方案扫清障碍。 随着我们更深入地探索 C++后端开发的复杂性,理解算法并掌握如何发挥其威力将始终是我们不可或缺的课题。

算法设计

设计算法是一个系统化的过程。 它始于理解当前问题,明确输入与输出,并规划将输入转化为预期输出所需的步骤。 这一过程需要仔细考虑边界情况、潜在陷阱以及时间与空间效率之间的权衡。
问题定义
设计算法的第一步是理解需要解决的问题。 这包括明确输入、输出以及需要满足的任何约束条件或要求。 清晰的问题定义对于设计成功的算法至关重要。
例如,让我们考虑一个后端问题——为图书销售平台开发推荐算法。 该算法的作用是分析用户的购买历史,并推荐他们可能感兴趣的书籍。
识别输入与输出
下一步是确定算法的输入和输出。 对于图书推荐系统而言,输入将是用户的购买历史,输出则是一份推荐书单。 明确输入输出至关重要,因为这有助于界定算法需要实现的功能。
定义处理流程
接下来,我们定义将输入转换为期望输出的步骤或流程。 根据问题的复杂程度,这个过程可能简单也可能复杂。 对于我们的推荐算法,我们可能会决定推荐与用户过去购买记录中大多数书籍属于同一类型的图书。 我们还可以通过考虑诸如已购书籍作者和这些书籍的平均评分等因素来进一步优化推荐结果。
算法伪代码
在定义流程之后,下一步是编写伪代码或创建流程图来概述算法的步骤。 这有助于可视化流程,并更容易发现潜在问题或优化空间。 图书推荐系统的伪代码可能如下所示:
以下是推荐算法伪代码的一个示例:
  1. 初始化一个空的推荐列表。
  2. 获取用户购买的书籍列表。
  3. 确定所购书籍中最常见的类型。
  4. 筛选平台书籍数据库,仅保留该类型的书籍。
  5. 根据平均评分对筛选后的书籍进行排序。
  6. 将评分最高的书籍添加到推荐列表中。
  7. 返回推荐列表。
优化
最后,考虑如何优化算法。 这可能包括减少冗余步骤、使用更高效的数据结构或利用并行处理。
对于图书推荐算法,优化可能涉及缓存用户的购买历史记录,这样就不必每次推荐时都从数据库中检索,或者可以使用优先队列来高效选择评分最高的图书。
测试
设计算法的最后一步是进行全面测试。 这包括使用各种输入运行算法以确保其产生预期输出。 您应该用正常输入、边缘情况甚至无效输入来测试算法,以确保它能处理所有可能的情况。 对于图书推荐系统,您可能会测试以下用户场景:有明显偏好的用户、购买过多种类型图书的用户以及尚未购买任何图书的用户。
总而言之,算法设计是一个系统化、迭代式的过程,需要理解问题、定义流程、编写伪代码、优化算法并进行全面测试。 精心设计的算法能决定后端系统是高效可靠还是缓慢易错。 因此,投入时间进行算法设计对所有后端开发者而言都是值得的投资。

排序算法

排序是计算机科学中最基础的操作之一,理解不同的排序算法对后端开发人员至关重要。 让我们深入了解冒泡排序、插入排序、快速排序和归并排序的工作原理。
冒泡排序
冒泡排序是一种简单算法,它反复遍历列表,比较相邻元素并在顺序错误时交换它们。 这个过程会重复进行,直到列表完全排序。
图3.1 冒泡排序算法
以下是使用冒泡排序算法的示例程序:
void bubbleSort(int arr[], int n) {
    for(int i = 0; i < n-1; i++) {
       for(int j = 0; j < n-i-1; j++) {
           if(arr[j] > arr[j+1]) {
               // 交换 arr[j] 和 arr[j+1]
               int temp = arr[j];
               arr[j] = arr[j+1];
               arr[j+1] = temp;
           }
       }
   }
}

以下逐步解析展示了上述代码片段的工作原理:

● 函数 bubbleSort 接收两个参数:一个整数数组 arr[]和一个表示数组大小的整数 n。
● 外层循环运行 n-1 次,其中 n 是数组的大小。 这是因为在每次遍历数组时,最大的元素会"冒泡"到数组末尾的正确位置。 因此,经过 n-1 次遍历后,最小的元素也会处于正确位置,数组即完成排序。
● 内层循环运行 n-i-1 次。 这是因为随着外层循环的每次遍历,前(n-i)个元素中的最大元素会被放置在该分段的末尾,因此在后续遍历中无需再考虑。
● 在内层循环中,代码会检查当前元素 arr[j]是否大于下一个元素 arr[j+1]。 如果是,则说明这些元素的顺序错误(因为我们的目标是升序排列),此时需要交换它们的位置。
● 交换操作通过临时变量 temp 完成。 先将 arr[j]的值存入 temp,然后将 arr[j]设为 arr[j+1]的值,最后将 arr[j+1]设为 temp 中存储的值。
这个过程持续进行,直到整个数组按升序排列完成。 该算法之所以称为"冒泡排序",是因为在每次迭代中最大的未排序元素会"冒泡"到其正确位置。
插入排序
插入排序是一种简单的排序算法,它通过逐个插入元素来构建最终的有序数组(或列表)。 对于大型列表,它的效率远低于快速排序、堆排序或归并排序等更高级的算法。

 

图3.2 插入排序算法
以下是使用插入排序算法的示例程序:
void insertionSort(int arr[], int n) {
    for(int i = 1; i < n; i++) {
       int key = arr[i];
       int j = i - 1;
        // Move elements of arr[0..i-1] that are greater than key to one position ahead of their current position
       while(j >= 0 && arr[j] > key) {
           arr[j+1] = arr[j];
           j--;
       }
       arr[j+1] = key;
   }
}

以下是其工作原理的逐步解析:
● 函数 insertionSort 接收两个参数:一个整数数组 arr[]和数组大小 n。
● 外层循环从数组的第二个元素运行至最后一个元素。 变量 i 表示待插入到已排序序列 arr[0..i-1]中的元素索引。
● 变量 key 保存当前需要与左侧元素比较的值。
● 内层循环 while(j >= 0 && arr[j] > key)将数组 arr[0..i-1]中所有大于 key 的元素向右移动一位。
● 移动过程持续进行,直到找到键值的正确位置,或者到达数组的起始位置。 随后将该键值插入到已排序序列的正确位置中。
● 外层循环接着移动到下一个元素,重复该过程直到整个数组排序完成。
该算法被称为插入排序,因为它通过将每个元素插入到正确位置来形成有序列表。 这是一种原地、稳定的排序算法,对小规模数据集效率较高,但对较大数据集效率较低。 虽然不适用于大规模数据集,但插入排序具有多项优势:实现简单、对小规模(甚至极小)数据集高效、具有适应性(即对已基本有序的数据集效率高)以及稳定性(即不会改变具有相同键值的元素相对顺序)。
快速排序
快速排序是一种高效的排序算法,基于分治技术。 其工作原理是从数组中选取一个"基准"元素,将其他元素按小于或大于基准分为两个子数组。 然后递归地对子数组进行排序。

 

图3.3 快速排序算法
以下是快速排序算法的代码示例:
void quickSort(int arr[], int low, int high) {
   if (low < high) {
       // pi is partitioning index, arr[pi] is now at right place
       int pi = partition(arr, low, high);
       // Separately sort elements before partition and after partition
       quickSort(arr, low, pi - 1);
       quickSort(arr, pi + 1, high);
   }
}
int partition(int arr[], int low, int high) {
    int pivot = arr[high]; // pivot
    int i = (low - 1); // Index of smaller element
    for (int j = low; j <= high - 1; j++) {
       // If current element is smaller than the pivot
       if (arr[j] < pivot) {
           i++; // increment index of smaller element
           swap(arr[i], arr[j]);
       }
   }
   swap(arr[i + 1], arr[high]);
   return (i + 1);
}

以下是对代码的逐步解读:
● quickSort 函数是实现快速排序的主函数。 它接收三个参数:数组 arr[],以及表示待排序数组部分起始和结束索引的两个整数 low 和 high。
● quickSort 函数首先检查 low 是否小于 high。 这是为了确保至少有两个元素需要排序。 如果 low 不小于 high,函数直接返回,因为无需排序。
● 若 low 小于 high,函数将继续对数组进行分区。 分区操作由 partition 函数完成,该函数接收与 quickSort 相同的参数,并返回一个整数 pi 作为分区索引。 partition 函数确保 arr[pi]元素在排序后的数组中处于正确位置。
● 分区完成后,quickSort 函数会递归地对 pi 前后元素进行排序。
● partition 函数的工作原理是从数组中选取一个基准元素(本例中为 arr[high]元素),并将其他元素划分为两个部分:小于基准的元素和大于基准的元素。 它通过变量 i 来追踪较小元素的索引位置。
● 分区函数通过 for 循环遍历数组。 若当前元素 arr[j]小于基准值,则递增 i 并将 arr[i]与 arr[j]交换。
● 在所有元素处理完毕后,分区函数将基准元素与 arr[i + 1]处的元素交换,从而将基准放置到排序数组中正确的位置。 随后返回 i + 1,即基准的索引。
● swap 函数是用于交换两个变量值的标准函数。 虽然提供的代码中未展示,但这是一个常见的工具函数。
快速排序不是稳定排序,意味着相等元素的相对顺序不会被保留。 尽管其最坏时间复杂度为 O(n^2),但快速排序仍是最快的数组排序算法之一,被广泛使用。
归并排序
归并排序同样基于分治技术。 其工作原理是将未排序的列表划分为 N 个子列表(每个子列表包含单个元素,单元素列表被视为已排序),然后反复合并子列表以生成新的有序子列表,直到最终只剩下一个子列表。

 

图3.3 归并排序算法
以下是归并排序算法的代码片段:
void mergeSort(int arr[], int l, int r) {
   if (l < r) {
       // Same as (l+r)/2, but avoids overflow for large l and h
       int m = l+(r-l)/2;
       // Sort first and second halves
       mergeSort(arr, l, m);
       mergeSort(arr, m+1, r);
       merge(arr, l, m, r);
   }
}
void merge(int arr[], int l, int m, int r) {
   int i, j, k;
    int n1 = m - l + 1;
    int n2 = r - m;
   /* create temp arrays */
   int L[n1], R[n2];
    /* Copy data to temp arrays L[] and R[] */
    for (i = 0; i < n1; i++)
       L[i] = arr[l + i];
    for (j = 0; j < n2; j++)
       R[j] = arr[m + 1+ j];
    /* Merge the temp arrays back into arr[l..r]*/
    i = 0; // Initial index of first subarray
    j = 0; // Initial index of second subarray
    k = l; // Initial index of merged subarray
    while (i < n1 && j < n2) {
       if (L[i] <= R[j]) {
           arr[k] = L[i];
           i++;
       } else {
           arr[k] = R[j];
           j++;
       }
       k++;
   }
    /* Copy the remaining elements of L[], if there are any */
   while (i < n1) {
       arr[k] = L[i];
       i++;
       k++;
   }
    /* Copy the remaining elements of R[], if there are any */
   while (j < n2) {
       arr[k] = R[j];
       j++;
       k++;
   }
}

归并排序是一种稳定排序算法,其效率高于冒泡排序和插入排序,时间复杂度为 O(n log n)。 但由于需要使用额外空间存储临时数组,其空间复杂度为 O(n)。
理解这些排序算法及其权衡取舍将帮助您在后端开发任务中做出恰当选择,确保系统效率与性能。

搜索算法

搜索算法是计算机科学的基础,应用于从简单数据检索到复杂问题解决的各种场景。 在众多搜索算法中,线性搜索和二分搜索因其简单高效而尤为突出。
线性搜索
顾名思义,线性搜索以线性或顺序方式遍历列表进行查找。 作为最基础的搜索算法,它通过逐个检查列表中的所有元素,直到找到目标元素或遍历完整个列表。 尽管原理简单,线性搜索却具有极强的适应性,既能处理有序列表也能处理无序列表,甚至包含重复元素的列表也不在话下。
线性搜索的过程可概括如下:从列表的第一个元素开始,逐个将每个元素与目标元素进行比较。 若当前元素与目标匹配,则搜索结束并返回该元素的位置。 若检查完所有元素仍未找到目标元素,则判定该元素不存在于列表中。
图3.4 线性搜索算法
以下是线性搜索算法的代码示例:
int linearSearch(int arr[], int n, int x) {
    for (int i = 0; i < n; i++) {
       if (arr[i] == x) {
           return i; // Element found, return index        }
   }
    return -1; // Element not found
}

在后端开发中,线性搜索适用于小型数据集或未排序数据。 但随着数据规模增大,由于最坏情况和平均时间复杂度均为 O(n),线性搜索会变得越来越低效。
二分查找
二分查找是一种高效搜索算法,能显著降低时间复杂度,特别适用于大型有序数据集。 与线性搜索逐个扫描列表元素不同,二分查找采用分治策略,每次比较后都将搜索空间减半。
图3.5 二分查找算法
二分查找算法通过将目标值与已排序列表的中间元素进行比较来工作。 二分查找的核心思想是:如果目标值等于中间元素,则查找成功,并返回中间元素的位置。 如果目标值小于中间元素,则意味着目标值只能位于列表的下半部分(左侧)。 反之,如果目标值大于中间元素,则目标值只能位于列表的上半部分(右侧)。 在后续的每个步骤中,算法会根据比较结果在缩小后的左半或右半部分重复这个过程,直到找到目标值或排除所有可能性。 这种不断分割列表的过程将持续进行,直到搜索范围缩小到单个元素。
以下是二分查找算法的代码示例:
int binarySearch(int arr[], int l, int r, int x) {
   if (r >= l) {
       int mid = l + (r - l) / 2;
       // If the element is present at the middle
       if (arr[mid] == x)
           return mid;
        // If element is smaller than mid, then it can only be present in left subarray
       if (arr[mid] > x)
           return binarySearch(arr, l, mid - 1, x);
       // Else the element can only be present in right subarray
       return binarySearch(arr, mid + 1, r, x);
   }
    // We reach here when element is not present in array
   return -1;
}

对于较大且已排序的数据集,二分搜索在最坏情况和平均情况下的时间复杂度均为 O(log n),其速度明显快于线性搜索。 但二分搜索要求数据集必须预先排序,而实际情况中这并非总能满足。

在后端开发中,当需要从大型有序数据集中快速定位特定项目时,二分搜索有多种应用场景。 例如,若需从按用户 ID 排序的用户列表中快速查找某个用户,二分搜索将是最佳选择。
了解这些算法的运作原理及其时间复杂度对后端开发至关重要,因为这些操作的效率会直接影响应用程序的性能表现。算法选择取决于任务的具体需求,包括数据集大小以及是否已排序等因素。

图算法

图算法是后端开发中各种操作的基础,尤其在数据分析、网络和路径查找领域至关重要。 我们将讨论三种重要的图算法:深度优先搜索(DFS)、广度优先搜索(BFS)和迪杰斯特拉算法。
深度优先搜索(DFS)
深度优先搜索(DFS)是计算机科学中用于遍历或搜索图的基本算法。 顾名思义,它会深入图中尽可能探索一条分支路径,直到该路径上没有新节点为止。 到达终点后,算法会回溯并开始探索下一个可用分支,重复此过程直到访问完所有顶点。
深度优先搜索(DFS)使用栈数据结构来记录接下来要访问的顶点。 栈遵循后进先出(LIFO)原则,这意味着最近发现但尚未完全探索的顶点将成为下一个探索对象。 这种方法使 DFS 具有沿着每个分支尽可能深入探索,然后再回溯的特性。
图3.6 深度优先搜索算法的应用场景
以下是 C++实现的 DFS 算法:
#include <list>
#include <iostream>
class Graph {
   int V;
   std::list<int> *adj;
public:
   Graph(int V);
   void addEdge(int v, int w);
   void DFS(int v);
};
Graph::Graph(int V) {
   this->V = V;
   adj = new std::list<int>[V];
}
void Graph::addEdge(int v, int w) {
   adj[v].push_back(w);
}
void Graph::DFS(int v) {
   bool *visited = new bool[V];
    for (int i = 0; i < V; i++)
       visited[i] = false;
   std::list<int> stack;
   visited[v] = true;
   stack.push_back(v);
   while (!stack.empty()) {
       v = stack.back();
       std::cout << v << " ";
       stack.pop_back();
       std::list<int>::iterator i;
       for (i = adj[v].begin(); i != adj[v].end(); ++i)
           if (!visited[*i]) {
               stack.push_back(*i);
               visited[*i] = true;
           }
   }
}

尽管实现简单,深度优先搜索(DFS)仍是算法设计和问题解决中的强大工具。 但需注意,DFS 并非在所有情况下都是最高效或最合适的算法。 其效率和适用性取决于具体问题的特性和需求。

广度优先搜索(BFS)
广度优先搜索(BFS)是一种基础的图遍历算法,它按照广度优先的顺序探索图中的所有顶点,即在移动到下一深度级别的顶点之前,先探索当前深度的所有相邻顶点。 这与深度优先搜索(DFS)形成对比,后者会沿着每条分支尽可能深入探索,然后回溯。
BFS 通过维护一个待探索顶点队列来运作。 它首先将起始顶点入队,然后进入一个循环,直到没有更多顶点可探索为止。 在循环的每次迭代中,BFS 会出队一个顶点并检查它。 如果该顶点是目标顶点,BFS 就会停止。 否则,它会将所有未被发现的该顶点的邻居顶点入队。 这个过程会持续进行,直到所有顶点都被探索完毕或找到目标顶点。
队列数据结构是广度优先搜索(BFS)的关键组成部分。 它遵循先进先出(FIFO)原则,这意味着顶点入队的顺序就是它们出队的顺序。 这确保了 BFS 以广度优先的顺序探索顶点。

 

图3.7 广度优先搜索算法
以下是 C++实现的 BFS 算法:
#include <list>
#include <iostream>
class Graph {
   int V;
   std::list<int> *adj;
public:
   Graph(int V);
   void addEdge(int v, int w);
   void BFS(int s);
};
Graph::Graph(int V) {
   this->V = V;
   adj = new std::list<int>[V];
}
void Graph::addEdge(int v, int w) {
   adj[v].push_back(w);
}
void Graph::BFS(int s) {
   bool *visited = new bool[V];
    for(int i = 0; i < V; i++)
       visited[i] = false;
   std::list<int> queue;
   visited[s] = true;
   queue.push_back(s);
   while(!queue.empty()) {
       s = queue.front();
       std::cout << s << " ";
       queue.pop_front();
       for (auto i = adj[s].begin(); i != adj[s].end(); ++i) {
           if (!visited[*i]) {
               queue.push_back(*i);
               visited[*i] = true;
           }
       }
   }
}
BFS 是一种多功能且基础的图遍历算法,因其能够寻找最短路径并高效处理大规模数据集的特点,在后端开发等多个领域得到广泛应用。
迪杰斯特拉算法
Dijkstra 算法以其发现者、荷兰计算机科学家 Edsger Dijkstra 命名,是图论中一种强大的工具。 作为一种贪心算法,它能解决具有非负边路径成本的图的单源最短路径问题,并生成最短路径树。
该算法通过维护一组未访问节点,并持续选择距起始节点暂定距离最小的节点,然后访问其所有未访问邻居来工作。 仅当找到通往某节点的更短路径时,才会更新该节点的暂定距离。 该过程持续进行直至所有节点都被访问,此时算法保证已找到从起始节点到所有其他节点的最短可能路径。
Dijkstra 算法广泛应用于网络路由协议,最著名的是 IS-IS(中间系统到中间系统)和 OSPF(开放最短路径优先)。 这些协议用于确定数据包到达特定目的地的最佳路由路径。

 

图3.8 迪杰斯特拉算法
以下是 Dijkstra 算法的 C++实现:
#include <iostream>
#include <limits>
#include <vector>
using namespace std;
// Function that implements Dijkstra's algorithm
void dijkstra(vector<vector<int> > graph, int src) {
   int V = graph.size();
    vector<int> dist(V, INT_MAX); // Initialize distance values
   dist[src] = 0;
   vector<bool> processed(V, false);
    for (int count = 0; count < V-1; count++) {
       // Pick the minimum distance vertex from the set of vertices not yet processed
       int min = INT_MAX, min_index;
       for (int v = 0; v < V; v++)
           if (processed[v] == false && dist[v] <= min)
               min = dist[v], min_index = v;
       int u = min_index;
       processed[u] = true;
       for (int v = 0; v < V; v++)
           if (!processed[v] && graph[u][v] && dist[u] != INT_MAX
               && dist[u]+graph[u][v] < dist[v])
               dist[v] = dist[u] + graph[u][v];
   }
    cout << "Vertex Distance from Source\n";
    for (int i = 0; i < V; i++)
       cout << i << " " << dist[i] << "\n";
}
此外,Dijkstra 算法作为子程序被广泛应用于解决旅行商问题等其他复杂图算法中,使其成为计算机科学领域的基础工具。

哈希算法

哈希是一种将键值范围转换为索引值范围的技术。 哈希使数据检索极其高效,时间复杂度近乎常数级 O(1)。 本节我们将重点讨论最基本的哈希函数、冲突解决技术以及在后端开发中的一些应用。
简单哈希函数
哈希函数将大数字或字符串映射为可用作哈希表索引的小整数。 哈希的核心思想是将键值对条目分布到桶数组中。
一个简单的哈希函数可以是将键值除以数组长度(N),然后取余数作为哈希值(key % N)。
unsigned int simpleHashFunction(string key, int N) {
   unsigned int hashValue = 0;
    for (char c : key) {
       hashValue += c;
   }
   return hashValue % N;
}
上述示例中,我们只是将键中的每个字符转换为其 ASCII 值,将它们相加,然后对表大小 N 取模以得到哈希值。
冲突解决
当两个键的哈希值指向同一索引时,就会发生冲突。 有几种解决冲突的技术:
● 链地址法:每个桶包含一个链表,存储所有哈希到同一索引的条目。
● 开放寻址法:当冲突发生时,按照特定序列在数组槽中寻找另一个空闲桶,直到找到空桶为止。
// Using separate chaining
class MyHash {
   int BUCKET;
   list<int> *table;
public:
   MyHash(int b) {
       BUCKET = b;
       table = new list<int>[BUCKET];
   }
   void insert(int key) {
       int i = hash(key);
       table[i].push_back(key);
   }
   bool search(int key) {
       int i = hash(key);
       for (auto x : table[i])
          if (x == key)
             return true;
       return false;
   }
   void remove(int key) {
       int i = hash(key);
       table[i].remove(key);
   }
private:
   int hash(int key) {
       return key % BUCKET;
   }
};
哈希函数被广泛应用于数据库索引、缓存、密码存储等多种场景。 例如存储密码时,哈希函数会将密码映射为唯一的哈希值存入数据库。 这意味着即使数据库泄露,攻击者也只能获取哈希值而非真实密码。
哈希表常用于需要快速访问数据的缓存应用。 键存储查询语句,值存储查询结果。 发起查询时先检查缓存是否存在结果(缓存命中),避免重复计算或数据库检索。 理解并实现哈希函数及冲突解决技术能显著优化后端应用的性能与安全性。

递归算法

概述
算法是包括后端编程在内的任何应用程序的核心。 递归和迭代算法是解决需要重复计算问题的方法。 我们将先了解它们的概念,然后探讨一些示例。
递归是指函数调用自身来解决原问题的较小版本。 这种方法对于某些任务非常有效,例如遍历树状数据结构。 递归算法通常包含一个终止递归的基本情况,以及一个将大问题分解为更小子问题的递归情况。
示例程序:斐波那契数列
斐波那契数列是编程中递归算法的经典示例。 该数列从 0 和 1 开始,后续每个数字都是前两个数字之和。
int fibonacci_recursive(int n) {
   if (n <= 1)
       return n;
   else
       return(fibonacci_recursive(n-1) + fibonacci_recursive(n-2));
}
上述代码中,基础情况定义为 n=0 和 n=1。 对于其他值,该函数会递归调用 n-1 和 n-2,从而将问题分解为更小的子问题。

迭代算法

概述
迭代是指循环执行一组指令,直到满足特定条件为止。 与递归相比,迭代在内存和性能方面通常更高效,因为它不涉及重复函数调用的开销。
示例程序:斐波那契数列(迭代实现)
斐波那契数列也可以通过迭代方式计算。
int fibonacci_iterative(int n) {
   if (n <= 1)
       return n;
   else {
       int fib = 1;
       int prevFib = 0;
       for(int i = 2; i <= n; ++i) {
           int temp = fib;
           fib += prevFib;
           prevFib = temp;
       }
       return fib;
   }
}
在斐波那契数列的迭代实现中,我们使用循环来计算第 n 位的斐波那契数。 这种方法效率更高,因为我们不会像递归方法那样重复计算相同的斐波那契数。
在后端开发中,选择递归还是迭代取决于具体问题。 递归通常更直观且易于实现,特别是对于涉及树状数据结构的问题。 但它可能更消耗内存。 另一方面,迭代通常效率更高,但对某些类型的问题可能实现起来不够直观。 理解递归和迭代算法对于高效的后端编程至关重要。

动态规划算法

动态规划,通常缩写为 DP,是一种强大的计算技术,通过将主要问题分解为多个更简单且更易处理的子问题来解决问题。 这一策略特别适用于解决优化问题,这类问题需要从多个潜在替代方案中选择最有利的行动方案。
"记忆化"思想是动态规划的基石,也是该方法的指导原则。 将每个子问题的解决方案系统地存储起来,确保每个问题只被解决一次的过程被称为"解决方案缓存"。 当需要再次解决特定子问题时,不再重新计算,而是直接使用先前存储的答案。 这显著减少了所需的计算时间和资源,使 DP 成为解决复杂问题的有效方法。
图3.9 动态规划的实现方法
递归和迭代是实践动态规划时可采用的两大主要方法。 递归通过将问题分解为更小的子问题来求解,这些子问题的解决方式与原问题类似。 迭代则是逐步解决问题的方法,通常从最简单的子问题开始,逐步推进到主要问题,并在每个阶段保存进度。 有效归档和重复利用已计算解是动态规划过程的核心。 通过保存每个子问题的解,我们确保当主问题再次出现时无需从头开始。 相反,我们可以直接使用先前计算过的解。 这种重复利用解的原则不仅减少了计算所需时间,还使问题解决过程更加高效可控。
让我们通过一个实际案例来演示如何运用动态规划优化常见算法问题。
示例程序:斐波那契数列(动态规划)
斐波那契数列是以 0 和 1 起始的数列,其中每个数字都是前两个数字之和。 该数列呈现如下规律:0, 1, 1, 2, 3, 5, 8, 13, 21,以此类推。
以下是一个使用动态规划计算斐波那契数列的示例程序:
int fibonacci_DP(int n) {
    vector<int> fib(n + 1, 0); // Initialize a vector to store Fibonacci numbers
    fib[0] = 0; // The first number in the Fibonacci sequence is 0
    fib[1] = 1; // The second number in the Fibonacci sequence is 1
    // Calculate each Fibonacci number starting from 2
    for(int i = 2; i <= n; ++i) {
        fib[i] = fib[i - 1] + fib[i - 2]; // Each number is the sum of the two preceding ones
   }
    return fib[n]; // Return the nth Fibonacci number
}
在这段代码中,我们初始化了一个大小为 n+1 的向量 fib 来存储直到 n 的所有斐波那契数。 该向量初始时填充为零。 然后我们手动设置斐波那契序列的前两个数 fib[0]和 fib[1]分别为 0 和 1。 程序的核心在于 for 循环,我们从第三个数(i=2)开始计算每个斐波那契数。 对于从 2 到 n 的每个 i,我们将 fib[i]计算为前两个数 fib[i-1]和 fib[i-2]之和。 通过这种方式,我们确保每个斐波那契数只计算一次,利用了动态规划的原理。
最终,我们返回第 n 个斐波那契数 fib[n]作为函数结果。 与传统递归方法相比,这种方法显著减少了计算时间和资源消耗,充分展现了动态规划的强大与高效。
示例程序:硬币找零问题
动态规划可解决的更复杂问题是硬币找零问题。 该问题是优化问题的经典案例,其目标是确定组成特定金额所需的最少硬币数量。
int coinChange(vector<int>& coins, int amount) {
    vector<int> dp(amount + 1, amount + 1);
   dp[0] = 0;
    for (int i = 1; i <= amount; i++) {
       for (int j = 0; j < coins.size(); j++) {
           if (coins[j] <= i) {
               dp[i] = min(dp[i], dp[i - coins[j]] + 1);
           }
       }
   }
    return dp[amount] > amount ? -1 : dp[amount];
}
提供的代码片段是一个名为 coinChange 的函数,实现了该问题的解决方案。 该函数接受两个参数:一个表示可用硬币面额的整数向量(coins),和一个表示目标找零金额的整数(amount)。
函数首先初始化一个大小为 amount + 1 的向量 dp,其中每个元素都被设置为 amount + 1。 该向量将存储构成每个可能零钱金额所需的最少硬币数量。 索引 0 处的值被设为 0,因为构成 0 金额不需要任何硬币。
随后函数进入嵌套循环。 外层循环遍历从 1 到 amount 的每个可能零钱金额。 内层循环遍历每种硬币面额。 对于每个小于等于当前金额的硬币,函数将对应的 dp 值更新为其当前值与 dp[i - coins[j]] + 1 中的较小值,后者表示使用当前硬币面额构成该零钱金额所需的最少硬币数。
最后,该函数检查 dp[amount] 处的值是否大于金额,这将表明无法用给定的硬币面额进行精确找零。 如果是这种情况,函数将返回 -1。 否则,它将返回 dp[amount] 处的值,该值表示进行精确找零所需的最小硬币数量。
动态编程的应用不仅限于解决数学问题。 此外,它对后端编程也有重大影响。 动态编程提供了一种既高效又可扩展的方法,可用于多种用途,包括优化数据库查询、管理资源以及解决复杂的调度问题。 通过将复杂问题分解为更小、更易处理的子问题并重用先前开发的解决方案,动态编程有可能显著提高后端系统的性能和可扩展性。

总结

本章探讨了各种算法在后端编程中的重要性及实际应用。 我们首先理解了算法在解决计算问题中的作用。 它们对于后端系统中的高效数据处理、资源分配和任务管理至关重要。 算法能优化后端性能,提升可扩展性和可靠性,尤其适用于高流量应用场景。
接着我们深入研究了算法设计的具体方法,通过冒泡排序、快速排序、归并排序和二分查找等排序搜索算法演示了设计过程。 我们还探讨了图算法和哈希算法等更复杂的领域,这些算法对解决涉及数据存储、检索和路由等后端复杂问题至关重要。 每个算法都详细阐述了其工作原理和相关示例,帮助您理解它们在后端环境中的实现方式。
最后,我们讨论了递归和迭代算法,以及相对高级的动态规划概念。 递归和迭代是基本的问题解决技术,而动态规划则是一种通过将大问题分解为更小、更易处理的子问题来优化解决方案的高阶方法。 我们通过斐波那契数列和零钱兑换问题等示例阐释了这些概念。 这些技术和方法对于后端编程中的数据库查询优化和复杂计算管理等任务至关重要。 本章强调了算法在构建软件应用和服务核心架构中的关键作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

akluse

失业老程序员求打赏,求买包子钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值