引言
具身智能(Embodied Intelligence)是指人工智能系统拥有物理身体,能够在真实环境中感知、交互和行动。其核心在于将多种感官输入(如听觉、嗅觉、触觉、视觉和运动本体感觉)融合为一个统一的感知模型,并基于此实现高效的控制策略。感官融合控制理论(Multisensory Fusion Control Theory)通过整合多模态数据,提升系统的环境理解能力和决策鲁棒性。本综述将系统介绍这一理论的基础、方法、关键技术、应用及挑战,为初探者提供全面框架。
1. 具身智能基础
具身智能强调“身体”在智能行为中的作用:系统通过身体与环境交互,学习自适应策略。与传统AI不同,它依赖于实时感官输入和运动输出,形成一个闭环控制过程。关键优势包括:
- 环境适应性:身体提供反馈,使系统能处理动态变化。
- 能效优化:融合感官减少冗余计算,提升效率。
- 学习机制:基于经验优化行为,如通过强化学习调整策略。
感官融合是核心,因为单一感官(如视觉)易受噪声干扰,而多感官互补增强可靠性。例如,视觉提供空间信息,听觉捕捉声音方向,触觉感知纹理,嗅觉识别化学信号,运动本体感觉(如关节位置和速度)则用于身体姿态控制。融合后,系统能构建更精确的环境模型。
2. 感官融合理论框架
感官融合控制理论整合听、嗅、触、视、运动五种感官,通过概率模型或优化算法实现统一感知。其核心是贝叶斯推理框架:假设环境状态$s$,感官数据$d_i$($i$表示感官类型),融合后验概率为: $$ P(s | d_1, d_2, \dots, d_n) \propto P(s) \prod_{i=1}^{n} P(d_i | s) $$ 其中$P(s)$是状态先验概率,$P(d_i | s)$是感官似然函数。这确保了融合信息更可靠。下面分述各感官的融合原理。
-
听觉融合:处理声音信号,用于定位声源或识别事件。例如,在嘈杂环境中,听觉与