神经网络对话模型与跨数据集行人重识别技术
1. 神经网络对话模型的评估与案例分析
1.1 模型评估结果
在神经网络对话模型中,对不同的编码器模型进行了语义评估和对抗评估,结果如下表所示:
| 模型 | 语义得分 | 对抗得分 |
| — | — | — |
| RNN - encoder (3layers) | 0.609 | 1.00 |
| RNN - encoder (4layers) | 0.616 | 1.03 |
| CNN - encoder (multi - kernels) | 0.602 | 1.06 |
| RICNN - encoder (multi - kernels) | 0.645 | 1.24 |
| RSCNN - encoder (multi - kernels) | 0.652 | 1.21 |
| 真实值 | 0.794 | — |
为了更直观地反映模型的改进情况,使用相对得分公式:
[Rscore(M)=\frac{score(M)}{score(Ref)}]
其中,$M$ 是生成对话模型,$Ref$ 是 3 层的 RNN 编码器。
从评估结果可以看出,尽管 4 层的 RNN 编码器在困惑度(ppl)上表现较好,但它的语义得分和对抗得分仍低于多内核的 RICNN 和 RSCNN 编码器。对比 RICNN 编码器和 RSCNN 编码器,RSCNN 编码器的语义得分更高,但对抗得分更低,这可能意味着深度特征有助于增强相关性,而特征的独立性使生成的回复更接近人类的回复。