algae
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
52、APS - PBW:基于WIFI探针的客流数据分析与预测系统
本文介绍了APS-PBW系统,这是一个基于WIFI探针的客流数据收集、分析与预测系统,专为中小型店铺设计。系统通过WIFI探针收集顾客设备的MAC地址和信号强度等信息,并利用SARIMA模型和BP神经网络对客流数据进行分析和预测。实验结果表明,SARIMA模型在预测准确性和稳定性方面优于BP神经网络。该系统能够为企业精细化运营提供有力支持,具备高精度检测店内外客流的优势。原创 2025-07-16 00:34:14 · 20 阅读 · 0 评论 -
51、社交媒体事件主题提取:RKLDA模型的应用与评估
本文提出了一种用于社交媒体事件主题提取的新型模型——Reinforced Knowledge LDA(RKLDA)。该模型结合了基于聚合和基于知识的方法的优点,通过自动挖掘跨事件的强化知识,并整合对话树结构和词嵌入技术,有效缓解了数据稀疏性和噪声问题。实验结果表明,RKLDA在多个真实世界微博数据集上均表现出优于现有方法的主题连贯性,为社交媒体环境下的主题提取提供了高效且稳定的解决方案。原创 2025-07-15 09:45:14 · 14 阅读 · 0 评论 -
50、北京出租车交通流量波动与社交媒体事件主题提取研究
本博文研究了北京出租车交通流量的波动特性,并利用复杂网络理论揭示了交通流量中的幂律现象和内外流量的影响规律。同时,提出了强化知识LDA(RKLDA)模型用于社交媒体事件的主题提取,提升了主题连贯性和语义相关性。研究成果为城市交通规划与社交媒体事件分析提供了理论支持与实践指导。原创 2025-07-14 13:54:28 · 15 阅读 · 0 评论 -
49、城市交通流量波动与出行模式研究
本研究基于复杂网络理论和北京出租车GPS数据,分析了城市交通流量的波动特性及出行模式的动态性。通过构建交通网络并计算内部与外部流量的影响,发现交通流量的标准差和均值服从幂律分布,且在不同时间尺度下,内外部流量对网络波动的作用存在差异。研究结果为城市交通管理和政策制定提供了科学依据,并为进一步探索多源交通数据奠定了基础。原创 2025-07-13 16:08:03 · 23 阅读 · 0 评论 -
48、重庆地铁出行模式多样性与动态性分析
本文基于2014年重庆地铁智能卡数据,从个体出行行为、地理位置功能和人群流动网络三个层面分析了城市乘客出行模式的多样性和动态性。通过统计分析和复杂网络建模,揭示了工作日与周末出行模式的差异、站点出行特征与土地利用的关系,以及人群流动网络的稳定社区结构。研究成果为地铁运营调度优化和城市基础设施规划提供了科学依据,同时指出了未来研究的方向,包括数据扩展、模型改进和应用拓展。原创 2025-07-12 11:42:08 · 13 阅读 · 0 评论 -
47、智能交通与疾病防控中的数据分析应用
本文探讨了数据分析在智能交通系统和疾病防控领域的应用。在智能交通方面,通过研究城市乘客的出行模式和交通网络特征,为公共交通调度和规划提供了科学依据;同时基于复杂网络理论对车站进行聚类分析,揭示了交通网络的动态结构特征。在疾病防控领域,提出了可持续主动监测(SAS)框架,有效应对数据不完整和稀疏带来的挑战,提升了感染风险预测的准确性和模型可持续性。文章结合实例与实验验证,展示了数据分析在这两个领域的重要价值和发展前景。原创 2025-07-11 12:45:46 · 13 阅读 · 0 评论 -
46、社交媒体关键日期检测与可持续主动监测框架研究
本文研究了社交媒体关键日期检测与可持续主动监测框架的设计与应用。通过对比不同关键日期检测算法,验证了CRDD方法在准确性上的显著优势。同时,提出了可持续主动监测(SAS)框架,该框架由预测器、分类器和规划器组成,基于部分可观测强化学习算法,有效解决了监测数据不完整情况下的资源分配和模型可持续性问题。案例研究表明,SAS框架在疟疾监测中表现优异,提升了检测准确率和资源利用率。最后,文章展望了SAS框架在更多领域的应用潜力及未来研究方向。原创 2025-07-10 14:29:43 · 11 阅读 · 0 评论 -
45、社交网络影响力最大化与社交媒体关键日期检测算法研究
本文主要探讨了社交网络中影响力最大化算法与社交媒体关键日期检测模型的相关研究。重点分析了LSC算法在不同传播概率下的表现,并与其他算法如Degree、k-core、CCA和PageRank进行了对比,结果显示LSC在较高传播概率下具有明显优势。此外,还介绍了CRDD模型在社交媒体事件关键日期检测中的应用,该模型充分考虑了子事件爆发性、内容相关性和持续时间,有效提升了检测精度。研究对社交网络信息传播优化和事件分析具有重要参考价值。原创 2025-07-09 11:13:20 · 11 阅读 · 0 评论 -
44、社交网络中的社区挖掘与影响力最大化算法
本文介绍了两种在社交网络分析中具有重要意义的算法:SASN 算法和 LSC 算法。SASN 算法基于块建模思想和变分贝叶斯框架,能够准确地发现有符号网络中的社区结构;LSC 算法则通过考虑局部结构特征并减少节点影响力重叠,在信息传播最大化方面表现出色。文章详细阐述了两种算法的原理、实验验证结果以及各自的优势与应用场景,并对社交网络分析的未来发展趋势与挑战进行了探讨。原创 2025-07-08 12:46:34 · 10 阅读 · 0 评论 -
43、网络社区检测算法研究与实践
本文探讨了NEEM-GCD算法在网络社区检测中的应用及其在真实和合成网络上的优越性能表现。该算法结合网络嵌入,提升了模型对广义社区的描述能力,并在多个评估指标上显著优于现有方法。此外,还提出了一种针对带正负链接网络的概率块建模与学习方法,能够有效发现社区结构及其他复杂网络模式。研究进一步展望了自动确定社区数量及拓展应用场景的方向,为社交网络分析、生物网络研究等领域提供了新思路。原创 2025-07-07 10:26:19 · 13 阅读 · 0 评论 -
42、主题实体与关系联合检测及网络嵌入增强的社区检测方法
本文探讨了两种重要的研究方法:一种是用于简单问答的主题实体与关系联合检测模型(JDN),通过自注意力机制避免错误级联,提升问答准确性;另一种是网络嵌入增强的广义社区检测模型(NEEM - GCD),结合混合模型与网络嵌入技术,能够有效识别复杂网络中的多样化社区结构。两种方法分别在问答系统和网络分析领域具有广泛的应用前景,如单关系与多关系问答、社交网络分析和生物网络研究。原创 2025-07-06 12:49:33 · 9 阅读 · 0 评论 -
41、基于知识图谱的简单问答:联合检测主题实体与关系
本文提出了一种基于知识图谱的简单问答方法——联合检测网络(JDN),通过同时进行主题实体检测和关系检测,有效避免了传统流水线方法中的错误级联问题。JDN 利用注意力机制聚焦与问题最相关的实体类型和关系,并通过端到端训练优化查询排序,从而提升问答准确率。实验结果表明,JDN 在 SQ 准确率和 Top-1 准确率上均优于现有方法,展示了其在语义理解和答案生成方面的优势。未来的研究方向包括模型优化、多模态融合以及领域适应性的提升。原创 2025-07-05 14:06:54 · 15 阅读 · 0 评论 -
40、信任 - 不信任感知推荐与简单问答实体关系联合检测
本博文探讨了两个重要的研究方向:信任 - 不信任感知推荐和简单问答中主题实体与关系的联合检测。在推荐系统方面,提出了一种结合矩阵分解和度量学习的新方法(MLCF),通过引入用户间的信任与不信任关系显著优化了推荐性能,并在真实数据集上验证了其有效性。在知识库问答领域,设计了一个基于神经注意力机制的联合检测网络模型,同时完成主题实体与关系的检测任务,解决了传统方法忽略两者关联性的不足。实验结果表明,该模型在准确率、召回率和F1值等方面均优于传统方法。未来的研究将聚焦于更复杂的信任建模以及扩展联合检测网络的应用范原创 2025-07-04 10:58:24 · 12 阅读 · 0 评论 -
39、热门微博预测与信任推荐技术研究
本文研究了热门微博预测与信任感知推荐的关键技术。在热门微博预测部分,采用LDA模型进行主题特征提取,并基于XGBOOST实现了特征离散化和标准化;进一步提出了一种结合皮尔逊相关系数的约束随机森林分类算法以提升预测准确率。实验结果表明该方法在运行速度和预测性能上均优于传统方法。在信任推荐部分,基于用户之间的信任-不信任关系,提出了结合距离度量学习与矩阵分解的推荐建模方法,并通过梯度下降优化损失函数。实验验证了该方法在多个评估指标上的优越性。原创 2025-07-03 09:09:55 · 11 阅读 · 0 评论 -
38、支持向量机与热门微博预测算法研究
本博文主要研究了支持向量机与热门微博预测的相关算法。在支持向量机方面,提出了ISUPDA算法及其在SVM中的应用(ISUPDA-SVM),通过概率执行原始步骤,在不牺牲收敛速度的前提下优化时间复杂度。实验表明该算法在多个数据集上表现高效且稳定。在热门微博预测方面,提出了基于XGBOOST的特征离散化算法(X-FDA)和改进的传统随机森林算法(CRF),分别解决了特征离散化效率低和特征选择不平衡的问题,从而显著提高了分类准确率和预测效果。最后,对两种应用场景的未来发展方向进行了展望,包括算法扩展、优化问题的应原创 2025-07-02 10:44:43 · 9 阅读 · 0 评论 -
37、量化新领域的出现与改进支持向量机算法
本文围绕网络安全领域中新领域的出现规律以及线性支持向量机算法的改进进行探讨。通过量化分析,研究了网络安全学科中领域度分布的幂律现象、新领域演化趋势及其祖先领域的动态特征,揭示了学科发展从跨学科驱动向内生动力转变的趋势。同时,提出了一种改进的次线性原始-对偶算法ISUPDA,并将其应用于支持向量机(ISUPDA-SVM),有效提高了算法效率。实验结果表明,该算法在大规模机器学习任务中具有显著优势。研究为预测新领域的发展提供了理论依据,并为优化机器学习算法提供了新思路。原创 2025-07-01 13:12:55 · 12 阅读 · 0 评论 -
36、量化新领域的出现:以网络安全为例
本文以网络安全领域为例,探讨了新学科领域出现的量化模式。通过分析微软学术中的大规模数据,构建了领域衍生空间,提出了领域衍生依赖网络(DDDN)和统计验证网络(DDDSVN),用以揭示领域之间的衍生关系。研究发现,新领域的祖先领域往往处于早期发展阶段,且其影响力随新领域生命周期呈现动态变化。此外,分析结果还表明,新领域的发展可分为初始形成、快速发展和稳定成熟三个阶段,领域生命周期正在逐渐缩短。这些发现为理解学科演化规律、预测新领域出现提供了新的视角和方法。原创 2025-06-30 15:25:19 · 10 阅读 · 0 评论 -
35、基于新划分准则的重叠微博社区检测方法
本文提出了一种基于核心标签的微博重叠社区检测方法。通过引入新的划分准则,结合社区凝聚力、耦合度和实用性三个维度,构建了综合的质量评估函数。在此基础上,设计了基于标签切割策略的社区检测算法,并衍生出NSTC和QBTC两种具体实现算法。实验在多个真实微博数据集上验证了该方法的有效性。未来的工作将聚焦于标签扩展与加权机制、算法优化及多模态数据融合等方向。原创 2025-06-29 09:43:11 · 10 阅读 · 0 评论 -
34、在线核选择的多土匪反馈模型研究
本研究提出了一种基于多臂老虎机框架的在线核选择多土匪反馈模型,用于解决在线学习中的探索-利用困境。通过构造特殊的概率分布和多反馈更新机制,该模型在理论上享有次线性遗憾界,并在多个数据集上与现有在线核选择方法相比表现出良好的准确性和效率。实验结果验证了模型的有效性,并展示了其在不同场景下的潜在应用价值。原创 2025-06-28 15:20:15 · 10 阅读 · 0 评论 -
33、深入探索ReLU变体与在线核选择:性能分析与创新方案
本文深入探讨了ReLU激活函数的多种变体,重点分析了对称变体vReLU在MNIST和Fashion-MNIST数据集上的优越性能,有效缓解了‘死亡ReLU’问题。同时提出了一种创新的在线核选择方法,通过转化为对抗性多臂老虎机问题,解决了探索-利用困境,并具备理论上的预期遗憾边界。实验结果显示,vReLU在多个模型中表现最佳,而新提出的核选择方法在大规模数据集上具有良好的性能与效率。原创 2025-06-27 12:18:04 · 12 阅读 · 0 评论 -
32、高光谱图像分类与激活函数的研究进展
本博文探讨了高光谱图像分类与深度学习激活函数的研究进展。重点介绍了一种基于多尺度光谱-空间融合的深度网络MSS-Net,该方法通过多尺度三维数据立方体输入,结合残差学习块和平均池化操作,在印度松树、帕维亚大学和KSC等多个数据集上实现了卓越的分类性能。此外,研究还比较了多种ReLU变体在全连接深度模型中的表现,发现对称的vReLU激活函数在MNIST和Fashion-MNIST数据集上显著提高了分类准确率。这些研究成果为高光谱图像分类和深度神经网络的设计提供了重要的理论支持和技术参考。原创 2025-06-26 12:02:54 · 9 阅读 · 0 评论 -
31、基于深度学习的地震记录中地震波初至识别
本文提出了一种基于深度学习的地震波初至识别方法,通过将问题转化为序列标记任务,利用PICKINGNET网络模型捕捉地震记录的时间序列特征。该方法有效解决了传统拾取方法对噪声敏感、依赖手动设计特征和大量调参的问题,并在两个真实世界的数据集上验证了其性能和可迁移性。实验结果表明,结合传统方法与本文提出的大致范围确定策略显著提升了初至拾取的准确性和鲁棒性,为地震监测和预警提供了新的技术手段。原创 2025-06-25 16:36:37 · 18 阅读 · 0 评论 -
30、对抗域适应中的分布对齐与语义一致性研究
本博文介绍了一种新的对抗域适应方法——EADA,通过引入条件分布对齐和语义一致性正则化,解决了传统对抗域适应方法中因忽略标签语义信息而导致分类性能不佳的问题。EADA采用多任务学习框架,在Office31和Office-Caltech数据集上的实验结果表明其在分类准确率方面优于现有方法DANN和DAN。原创 2025-06-24 15:05:48 · 12 阅读 · 0 评论 -
29、基于卷积神经网络的低级别FPGA视频恢复方案
本文提出了一种基于卷积神经网络(CNN)的低级别FPGA视频恢复方案。通过分析网络超参数与PSNR值的变化,构建了浅层CNN模型以减少计算复杂度,并采用定点量化技术降低内存带宽需求。同时,利用FPGA的并行性优化技术提高执行效率。实验结果表明,该方案在保证视频恢复质量的前提下显著降低了功耗和执行时间,相较于CPU和GPU实现具有明显优势。该方法适用于监控系统、移动设备和嵌入式系统等对功耗和资源敏感的应用场景。原创 2025-06-23 14:25:33 · 9 阅读 · 0 评论 -
28、交通流量预测与视频恢复技术解析
本文深入探讨了交通流量预测与低级别FPGA视频恢复技术。在交通流量预测方面,基于深度双向长短期记忆网络(DBL)构建的P - DBL模型结合降水数据,在两个出租车GPS轨迹数据集上展现出优异性能,具有较高的预测精度。而在视频恢复领域,针对计算能力受限的低级别FPGA设备,提出了一种高效的CNN设计方法,通过减少模型参数和定点量化训练实现了近实时帧恢复,并显著降低了功耗。这些研究为各自领域的实际应用提供了创新性解决方案和技术参考。原创 2025-06-22 12:26:32 · 12 阅读 · 0 评论 -
27、多任务卷积神经网络模型在引文分类及交通流量预测中的应用
本文介绍了多任务卷积神经网络(Multitask-CNN)在引文情感和目的分类任务中的应用,并提出了一种考虑降水影响的深度交通流量预测架构(P-DBL)。研究显示,多任务CNN在两个公共引文数据集上优于传统机器学习和单任务深度学习模型。同时,P-DBL模型通过融合LSTM、残差连接、双向结构和降水因素,在交通流量预测中取得了更高的准确性。原创 2025-06-21 12:53:57 · 10 阅读 · 0 评论 -
26、情感分析与引用分类的创新方法
本文介绍了情感分析和引用分类的创新方法。在情感分析方面,提出了生成情感嵌入语义空间(SESS)的方法,该方法优于传统的 Word2Vec 方法,并揭示了情感词典中存在歧义性。在引用分类方面,讨论了引用情感分类(CSC)和引用目的分类(CPC)的任务,并提出了基于卷积神经网络的多任务学习模型(Multitask-CNN),通过联合学习 CSC 和 CPC 提升了分类性能。实验表明,该模型优于传统方法(如 SVM 和 NB),验证了多任务学习的有效性。未来的研究方向包括数据集的拓展、模型优化以及应用场景的延伸。原创 2025-06-20 13:25:27 · 10 阅读 · 0 评论 -
25、情感嵌入语义空间助力更精准的情感分析
本文提出了一种新颖且高效的方法,用于从语义空间生成情感嵌入语义空间(SESS),以提升情感分析的准确性。通过结合K-means聚类和CNN模型,SESS能够同时捕获语义和情感信息,解决了传统语义导向和情感导向词嵌入的局限性。实验结果表明,在电影评论数据集上的情感分类任务中,基于SESS构建的分类器显著优于现有方法,并生成了更细粒度的情感词典,为实际应用提供了更强的支持。原创 2025-06-19 11:30:06 · 9 阅读 · 0 评论 -
24、利用三重损失卷积神经网络识别字符匹配验证码
本文提出了一种基于卷积神经网络和三重损失的方法,用于识别新型字符匹配验证码。针对汉字结构复杂、干扰因素多等问题,通过二值化处理、图像降噪和字符分割等预处理步骤,结合改进的CNN网络结构和三重损失优化策略,实现了对字符匹配验证码的高效识别。实验表明,该方法在多个任务数据集上均取得了较高的准确率和较快的收敛速度,尤其在任务五(字符匹配验证码)中表现优异。原创 2025-06-18 15:26:17 · 589 阅读 · 0 评论 -
23、基于2D CNN的肺部结节检测与分类系统
本博客介绍了一种基于2D卷积神经网络(CNN)的肺部结节检测与分类系统。该系统采用改进的Faster R-CNN架构进行结节候选检测,并通过提升分类器结合多个CNN降低假阳性率。相比传统的3D CNN方法,该系统在训练时间、资源消耗和检测性能上具有优势,适用于大规模肺部疾病筛查和临床辅助诊断。原创 2025-06-17 11:49:03 · 10 阅读 · 0 评论 -
22、自适应集成的自动编码器社区检测与肺部结节检测分类技术
本文介绍了两种创新技术:基于自适应集成自动编码器的AAGR算法用于社区检测,以及基于2D卷积神经网络的肺部结节检测与分类系统。AAGR算法通过引入自适应参数来平衡网络拓扑和节点内容信息,在合成和真实网络中均表现出优异的性能稳定性。肺部结节检测系统采用改进的Faster R-CNN架构结合反卷积层实现高灵敏度检测,并通过多阶段提升架构有效降低假阳性率。两种方法分别在社区检测和医学图像分析领域展示了强大的应用潜力,未来可进一步拓展到社交网络、生物网络及多模态医学诊断等领域。原创 2025-06-16 12:37:29 · 11 阅读 · 0 评论 -
21、基于自适应集成网络拓扑和节点内容的自编码器社区检测
本文提出了一种基于自适应图正则化自编码器(AAGR)的社区检测方法,该方法通过自适应集成网络拓扑和节点内容信息,有效解决了现实网络中拓扑与内容之间的不匹配问题。利用自编码器框架,结合模块化矩阵重构和图正则化项,并引入自适应参数α来动态调整拓扑与内容的权衡,从而提高社区检测的准确性。实验结果表明,AAGR在合成网络和真实网络数据集上均优于现有方法,表现出更强的鲁棒性和性能优势。原创 2025-06-15 11:49:56 · 8 阅读 · 0 评论 -
20、跨数据集行人重识别:SimPGAN模型的原理与实践
本文介绍了一种基于生成模型的跨数据集行人重识别解决方案——SimPGAN。该模型通过将目标数据集的未标注图像转换为源数据集的风格,使其适应预训练的Siamese卷积分类器,从而提高跨数据集行人重识别的性能。SimPGAN引入了循环一致性损失和相似性一致性损失,在转换过程中保留了图像的重要身份信息。实验结果表明,SimPGAN在多个基准数据集上的表现优于现有的无监督跨数据集迁移算法,并展示了其在实际应用中的广泛前景。原创 2025-06-14 12:39:28 · 9 阅读 · 0 评论 -
19、神经网络对话模型与跨数据集行人重识别技术
本文探讨了神经网络对话模型与跨数据集行人重识别技术的研究进展与应用。在对话模型方面,对比了多种编码器模型的性能,提出了RICNN和RSCNN模型以提高回复的相关性与多样性。在行人重识别领域,介绍了现有挑战及解决方案,并提出SimPGAN模型用于跨数据集无监督Re-ID。文章还分析了两种技术的对比与发展前景,展望了其在智能客服、安防监控等领域的应用潜力。原创 2025-06-13 09:20:40 · 8 阅读 · 0 评论 -
18、基于混合RNN - CNN编码器的神经对话模型研究
本文研究了一种基于混合RNN-CNN编码器的神经对话模型,旨在解决现有对话系统容易生成通用和安全回复的问题。通过结合RNN捕捉序列长期依赖关系的能力和CNN提取局部特征的优势,提出了RICNN和RSCNN两种编码器结构,并在天涯论坛数据集上进行了实验验证。结果表明,混合编码器在多个评估指标上表现优异,为提升对话系统的回复多样性和准确性提供了有效方法。原创 2025-06-12 10:49:29 · 8 阅读 · 0 评论 -
17、OWL本体的构造性证成提取方法解析
本文详细解析了OWL本体中的证成提取方法,涵盖破坏性证成提取、朴素构造性证成提取和高级构造性证成提取三种核心算法。通过流程图展示其工作原理,并总结了不同算法的优化策略。实验评估比较了各算法在真实世界本体上的性能,结果显示高级构造性证成提取算法(ACJE)效率最优。文章最后给出了根据本体规模和需求选择合适算法的实际应用建议,旨在帮助开发者更好地理解和应用OWL本体的证成提取技术。原创 2025-06-11 16:24:34 · 10 阅读 · 0 评论 -
16、自动化推理与OWL本体证明提取技术解析
本文探讨了自动化推理与OWL本体证明提取技术,结合真实网络案例研究,展示了如何利用RDF和命名图对多源数据进行形式化表示,并通过RDFS和OWL蕴涵规则进行有效推理。文章提出了一种建设性的OWL本体证明提取方法,相较于传统破坏性方法,在性能和准确性上均有显著提升。同时分析了这些技术在网络管理、语义网和人工智能等领域的广泛应用前景以及面临的挑战。原创 2025-06-10 09:16:59 · 10 阅读 · 0 评论 -
15、基于增量评估的SPARQL查询运行时优化及网络知识推理框架
本文介绍了一种基于增量评估的SPARQL查询运行时优化及网络知识推理框架ROSIE。通过在LUBM、SNIB和DBpedia等数据集上的实验,验证了ROSIE在复杂查询和真实网络场景下的高性能和有效性。ROSIE不仅在查询响应时间上优于现有系统如RDF-3X、TripleBit、Virtuoso 7和DB2RDF,还通过统一表示异构网络数据和来源信息,支持丰富的语义推理。该框架在网络监测、漏洞评估和网络防御等场景中展现出广泛的应用前景。原创 2025-06-09 15:35:34 · 14 阅读 · 0 评论 -
14、ROSIE:利用增量评估实现SPARQL查询的运行时优化
本文介绍了ROSIE框架,该框架通过增量评估实现SPARQL查询的运行时优化。针对RDF数据和SPARQL查询的特点,ROSIE利用候选序列(CS)和查询关系图(QRG)生成优化的执行顺序,并结合误差传播分析动态调整查询计划,从而显著提高复杂SPARQL查询的执行效率。实验结果表明,ROSIE在复杂查询上的性能比现有技术提升了1.5到20倍。文章还展望了未来的研究方向,包括处理更复杂的查询类型、结合机器学习技术和优化分布式环境下的性能。原创 2025-06-08 16:29:54 · 9 阅读 · 0 评论 -
13、改进的多智能体认知规划器:基于高阶信念变化与启发式搜索
本文提出了一种改进的多智能体认知规划方法,基于高阶信念变化和启发式搜索技术。通过引入交替析取范式(ADNF),设计了高效的推理、修订和更新算法,并结合启发式函数和剪枝策略优化搜索过程。实验表明,实现的多智能体规划器 MEPL 在多个方面优于 MEPK,能够更高效地解决大规模问题。原创 2025-06-07 16:25:24 · 11 阅读 · 0 评论