
深度学习基础
换个名字就很好
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
怎么推理还cuda out of memory
推理还cuda out of memory 是有问题的,要加上不计算梯度的with torch.no_grad()原创 2022-12-30 11:03:03 · 223 阅读 · 0 评论 -
python3.8 conda 安装dlib
python3.8 conda 安装dlib原创 2022-08-04 19:21:36 · 409 阅读 · 0 评论 -
cosine_annealing
sgdr = CosineAnnealingLR_with_Restart(optimizer, T_max=config.cycle_inter, T_mult=1, model=net, ...原创 2022-03-03 21:14:17 · 1406 阅读 · 0 评论 -
train_test_split
from sklearn.model_selection import train_test_splitimport osimgs_dir = r"img"train_dir = r"train"valid_dir = r"test"image_list = os.listdir(imgs_dir)X_train, X_test = train_test_split(image_list, test_size=0.2)with open(train_dir, 'a') as f: for原创 2022-03-03 15:51:01 · 420 阅读 · 0 评论 -
focal loss softmax cross entropy sigmoid mse loss及其求导
FL(pt)=−αt(1−pt)γlog(pt),pt=p if y=1,else (1−p)FL(p_t) = - \alpha_t (1-p_t)^{\gamma} \log{(p_t)}, p_t=p \ if \ y=1,else \ (1-p)FL(pt)=−αt(1−pt)γlog(pt),pt=p if y=1,else (1−p)论文中α=0.25\alpha=0.25α=0.25, γ=2\gamma =2γ=2时表原创 2022-01-28 16:09:19 · 2069 阅读 · 0 评论 -
优化器optimizer
GDθt=θt−1−α ∂Loss∂θ\theta_t=\theta_{t-1}-\alpha\ \frac{\partial Loss}{\partial \theta}θt=θt−1−α ∂θ∂Loss有三种,sgd,bgd,mini-batch gd,s,b, gd分别指stochastic, batch, gradient descent。区别分别是每一步计算一项,一小批,全部数据。在实现的时候,dataloader的batchsize分别是1,num_mini_bat原创 2022-01-25 20:00:05 · 1355 阅读 · 0 评论 -
same conv 减半conv 参数积累
same convstride为1:3,1,x,x1,1,0,1减半convstride为2:3,2,x,x1,2,0,1原创 2022-01-03 13:15:31 · 360 阅读 · 0 评论 -
感受野计算
递归版:rl−1=sl∗kl+kl−slr_{l-1}=s_l*k_l+k_l-s_lrl−1=sl∗kl+kl−sl迭代版:r0=∑l=1L((kl−1)∏i=1l−1si)+1r_0=\sum_{l=1}^{L}((k_l-1)\prod_{i=1}^{l-1}s_i)+1r0=∑l=1L((kl−1)∏i=1l−1si)+1如果是空洞卷积,只需要改一下klk_lkl,把它改成α(kl−1)+1\alpha(k_l-1)+1α(kl−1)+1,α\alphaα是dila.原创 2021-12-30 21:29:35 · 1276 阅读 · 0 评论 -
basic block 和 bottle net block区别
关于kernelbasic block 的kernel都是3,有两组kernel。bottle net block 的kenel是1,3,1,有三组kernel。关于channelbasic block 是 inchan, outchan, outchan, outchan。bottle net block 是 inchan, outchan, outchan, outchan, outchan, outchan*expansion关于downsample两者都是,最后一组cbr,看实际情况在原创 2021-12-29 16:40:17 · 1035 阅读 · 0 评论