#!/usr/bin/python
# -*- coding:utf-8 -*-
import numpy as np
import pandas as pd
from sklearn import preprocessing
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
from sklearn.pipeline import Pipeline
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
if __name__ == "__main__":
path = './iris.data' # 数据文件路径
data = pd.read_csv(path, header=None)
data[4] = pd.Categorical(data[4]).codes
x, y = np.split(data.values, (4,), axis=1)
# print 'x = \n', x
# print 'y = \n', y
# 仅使用前两列特征
x = x[:, :2]
lr = Pipeline([('sc', StandardScaler()),
('poly', PolynomialFeatures(degree=10)),
('clf', LogisticRegression()) ])
lr.fit(x, y.ravel())
y_hat = lr.predict(x)
y_hat_prob = lr.predict_proba(x)
np.set_printoptions(suppress=True)
print('y_hat = \n', y_hat)
print('y_hat_prob = \n', y_hat_prob)
print('准确度:%.2f%%' % (100*np.mean(y_hat == y.ravel())))
# 画图
N, M = 200, 200 # 横纵各采样多少个值
x1_min, x1_max = x[:, 0].min(), x[:, 0].max() # 第0列的范围
x2_min, x2_max = x[:, 1].min(), x[:, 1].max() # 第1列的范围
t1 = np.linspace(x1_min, x1_max, N)
t2 = np.linspace(x2_min, x2_max, M)
x1, x2 = np.meshgrid(t1, t2) # 生成网格采样点
x_test = np.stack((x1.flat, x2.flat), axis=1) # 测试点
# # 无意义,只是为了凑另外两个维度
# x3 = np.ones(x1.size) * np.average(x[:, 2])
# x4 = np.ones(x1.size) * np.average(x[:, 3])
# x_test = np.stack((x1.flat, x2.flat, x3, x4), axis=1) # 测试点
mpl.rcParams['font.sans-serif'] = ['simHei']
mpl.rcParams['axes.unicode_minus'] = False
cm_light = mpl.colors.ListedColormap(['#77E0A0', '#FF8080', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
y_hat = lr.predict(x_test) # 预测值
y_hat = y_hat.reshape(x1.shape) # 使之与输入的形状相同
plt.figure(facecolor='w')
plt.pcolormesh(x1, x2, y_hat, cmap=cm_light) # 预测值的显示
plt.scatter(x[:, 0], x[:, 1], c=y.flat, edgecolors='k', s=50, cmap=cm_dark) # 样本的显示
plt.xlabel(u'花萼长度', fontsize=14)
plt.ylabel(u'花萼宽度', fontsize=14)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.grid()
patchs = [mpatches.Patch(color='#77E0A0', label='Iris-setosa'),
mpatches.Patch(color='#FF8080', label='Iris-versicolor'),
mpatches.Patch(color='#A0A0FF', label='Iris-virginica')]
plt.legend(handles=patchs, fancybox=True, framealpha=0.8)
plt.title(u'鸢尾花Logistic回归分类效果 - 标准化', fontsize=17)
plt.show()