行业分享丨TCL华星光电:AI 如何助力LCD显示模组精准老化预测?

△Altair 正式发布全球100个AI应用案例电子书,内容覆盖10+行业的100个AI应用场景。关注Altair微信立即获取,了解全球AI驱动工程设计应用成功案例,以及AI技术如何为工业制造业的产品全生命周期带来赋能与革新。

“我们使用的RapidMiner软件非常友好,无需懂编程语言,也不需要具备深厚的AI算法领域知识,真正帮助我们实现了数据价值的挖掘。

基于RapidMiner软件调试后,我们使用了四个测试集进行训练,收集了四个月的产线实时数据,统计发现SKIP率、精确率和漏放率均达到上线验证标准。

—— TCL华星光电技术有限公司 

仿真设计高级工程师 巴静

在2025 Altair 区域技术大会·华南站的精彩演讲

很荣幸本次能有机会给大家分享目前华星光电在AI与仿真方向的案例,本次分享的内容主要包括三个部分:

1、华星光电公司介绍

2、AI仿真案例介绍

3、对AI仿真的总结与未来展望

正文如下:

华星光电公司介绍

首先,给大家介绍一下华星光电:华星光电全称是TCL华星光电技术有限公司,成立于2009年,是TCL集团旗下专注于半导体显示的国家高新技术企业,同时也是中国第二大显示屏生产商。公司总部位于深圳,在多地布局了产业,拥有深圳、武汉、惠州、苏州、广州以及印度、越南等地的十多条面板生产线和模组基地。

截至目前,累计投资金额已超过2600亿元。凭借这些产业布局和资金投入,构建了覆盖大中小尺寸面板以及高端显示应用的全球产业链。

华星光电的产品主要涵盖TV显示、商业显示,以及手机、平板、VR、笔记本和车载等中小尺寸显示屏幕,还有部分柔性电子显示产品。我们拥有众多客户群体,例如大家熟知电视品牌,如TCL电视、LG、三星,常规笔电品牌如戴尔,联想,惠普,华硕(ASUS),热门手机品牌如小米,OPPO、vivo等,还有汽车制造企业,如大众、奥迪、比亚迪等。我们会根据客户的需求,为其提供相应的显示屏产品。

接下来,介绍一下华星光电的组织及业务情况。我来自TCL华星研发中台技术创新中心仿真开发组,主要从事仿真开发工作。

我们小组目前包含5个仿真模块工作,第一部分是AI+工艺仿真,第二部分是AI+面板仿真,第三部分是AI+电子融合仿真,第四部分是AI+模组仿真,第五部分是Design for制造相关仿真。我目前主要负责Design for制造相关的仿真工作。我们小组的前景是利用AI+仿真技术赋能研发设计制造,实现更快、更全、更优的虚拟开发工作。

图片

AI 仿真案例介绍

下面,跟大家详细分享我们的AI仿真案例。在正式介绍之前,先和大家分享一些基础信息。

“Aging”是老化的意思,Aging测试即老化测试,是指将液晶显示模组置于高温环境中,通过通电进行测试,目的是在高温环境下对液晶面板进行检测,通过输入各种检测信号,检测面板的显示状况,以便有效暴露面板的缺陷。

缺陷类型主要包括线缺陷、气泡缺陷、mura缺陷以及电器缺陷,其中线缺陷是完全不能接受的,因为它可能严重影响显示效果,导致图像不完整或出现明显的视觉干扰。

在当前测试产能loading的情况下,我们需要借助AI技术进行精准Aging测试,节约的产能可用于加严Aging测试,以改善产品品质。

项目目标主要有两个考量点:

其一,目前Aging线不良率大概在0.1% - 0.2%实际上很多产品需要100% 通过Aging测试,但是大部分产品状态经过老化之后也是一个优良品,因此需要进行合理化Aging测试以节约资源来识别少量的不良;

其二,到2025年,客户端的漏放标准需收严到500dppm,其中与面内相关的漏放多为线不良,我们可以在厂内通过加严Aging(延长aging时间)提前拦截,避免不良片漏放到客户端。我们的任务是利用AI建模完成一个二分类的预测任务,实现60%的SKIP率。

以往在完成对应制程后,需要100%对模组进行Aging测试,而现在通过AI预测Aging结果,对于合格样本可直接跳过该环节,对于有问题的样本则进行正常Aging测试。

我们的模型应用有三大指标:第一,SKIP率大于60%,要释放60%的Aging测试产能;第二,模型精确率需达到99.95%以上;第三,降低客诉漏放风险,使得漏放率低于万分之三。 

图片

项目方案的整体实施过程主要包括两部分,第一部分是AI模型的构建,第二部分是在系统平台进行串接。

在模型构建部分,我们首先分析了Aging线不良的相关异常原因,识别关键参数,下载了约10万片数据样本并进行数据加工,然后使用AI软件进行模型开发和部署。

模型部署的整体路径如下:通过良率管理系统(YMS)的数据获取生产数据源,将开发好的模型部署在大数据分析平台,实现实时预测,预测结果会推送到制造执行系统(MES),模组端的Aging机台读取预测结果指令后执行Aging动作,从而实现精准Aging功能。

在详细介绍案例的实施过程之前,需要先介绍一下我们使用的RapidMiner软件。

对于我这样非专业人员来说,它非常友好,无需懂编程语言,也不需要具备深厚的AI算法领域知识。

我2019年毕业于南京大学化学工程专业,理论上与AI并无关联,但机缘巧合从事了仿真相关工作,接触到了AI这类新型仿真技术,这款AI大数据分析软件真正帮助我们实现了数据价值的挖掘。

图片

下面,正式介绍建模方案。

由于建模需要基于数据展开,当前数据存在一些问题:

  • 一是数据分布不平衡,NG样本较少;

  • 二是OK与NG样本存在重复,可能与特征识别不全面有关;

  • 三是模型指标偏高,因为目标是是改善客诉漏放,我们的目标是要基于0漏放提出的,但是对于模型应用来说,我们为模型应用预留了一定空间;

  • 四是数据随生产波动会有变异,这会影响模型预测的稳定性,若稳定性太差,SKIP率可能大幅波动,影响生产节奏。

基于以上问题,我们构建了初步建模方案,利用RapidMiner软件进行数据清洗和数据采样,选择多个模型进行初筛和交叉验证,并结合代价敏感学习和置信度调整,最终得到一个较好的模型。经过多测试集验证,模型效果达到了产线应用标准。

图片

下面介绍具体的建模过程。起初由于对软件使用不太熟练,我想偷懒借用Auto Model模块自动建模来进行初筛,但发现采用自助建模分析流程导入数据进行预测存在问题。

因为我们的预测场景是二分类,重点关注漏放率,若预测失败会有客诉风险,所以需要设置成本敏感学习矩阵来调整参数,但同一套参数搭配不同模型,指标差异较大,因此我们决定采用单独建模进行模型开发。

于是我们采用Design 模块进行单独建模,主要包括数据预处理、模型构建和测试集验证三个部分。这三个部分均基于RapidMiner软件,融合相关算子构建流程,并进行模型训练与测试。

图片

初筛模型时,我们基于预测场景选取了贝叶斯、随机森林和深度学习等模型,发现贝叶斯模型的调优效果较好,后续便基于贝叶斯算法对算子和模型参数进行微调。

在建模细节方面,考虑到数据分布不平衡的情况,我们从数据和算法层面进行调整。在数据层面,采用采样技术调节OK和NG样本的占比;在算法层面,运用代价敏感学习赋予惩罚系数,以调控漏放率。

图片

在模型选择上,初筛发现贝叶斯算法较优,但还有其他算法可供尝试。若需要对建模过程和最终预测的各特征权重进行可视化展示,就需要重点考虑模型的可解释性。

确定模型后,为精准调控预测效果,我们对置信度阈值进行了微调。软件自带阈值为0.5,大于0.5判定为OK,小于0.5判定为NG。通过降低阈值,将预测的SKIP率从22000多片提升到26000多片,因为释放产能需要满足60%的SKIP率,这样模组产线才能正常运转。

图片

采用相关策略后,模型预测效果逐渐变好,漏放片数从最初的15片减少到7片,SKIP样本数量也在合理调整,以保证低漏放率。

基于RapidMiner软件调试后,我们使用了四个测试集进行训练,收集了四个月的产线实时数据,统计发现SKIP率、精确率和漏放率均达到上线验证标准,但仍有提升空间。

目前漏放率为0.0286%,可继续降低;SKIP率为69.9%,可调整至60%,以进一步降低漏放率,这也符合项目改善漏放的初衷。

同时四个训练集的模型稳定性可能存在偏差,特别是漏放率,最好情况为0.018%,最差情况为0.045%,我们还需持续探索如何进一步提升模型稳定性。

图片

前面介绍的案例是基于65寸产品开发的,公司内还有多种不同尺寸的产品。我们尝试对75寸、85寸和98寸产品进行Aging模型预测,从65寸迁移到75寸时,只需更新数据源并微调内部算子,就能快速构建75寸模型。

目前65寸和75寸已达标,85寸和98寸还需持续优化。

模型指标受限因素主要有两个:一是85寸和98寸屏幕较大,产量和出货量少,可用数据有限;二是其不良率高于65寸和75寸,大尺寸屏幕出现异常的概率相对较高。

图片

总结与展望

下面分享一下本案例实施过程中的心得:

第一,作为非专业数据人员,使用软件前需初步了解机器学习相关知识,再进行案例开发和软件实操,这样能加深理解。

第二,在仿真软件中设置参数和选择算子对仿真结果影响重大,关键参数的调控至关重要,需要不断摸索。

第三,结果验证与实际结果的匹配是大数据仿真工作的关键环节,过程中需实时调控。

第四,AI模型开发并非终点,模型应用还需考虑落地规划,这样才能借助AI发挥数据潜在价值,这也是应用AI大数据软件开展工作的最终目的。

最后,进行总结与展望。

本次主要为大家介绍了AI助力LCD显示模组精准老化预测工作,这是AI驱动的精准赋能产品生产优化与品质进阶的案例。

但AI的应用远不止于此,在技术开发、产品研发设计、制造生产管理以及测试与质量管理等过程中,都可以融合AI大数据应用,实现更多应用场景的落地,助力企业更好地发展。

图片

以上就是我本次介绍的全部内容,谢谢大家!

申请免费试用

如您对 Altair 软件及解决方案感兴趣

欢迎关注Altair微信,申请免费试用

全球100个AI应用案例电子书下载

图片

△Altair 正式发布全球100个AI应用案例电子书,内容覆盖10+行业的100个AI应用场景。关注Altair微信立即获取,了解全球AI驱动工程设计应用成功案例,以及AI技术如何为工业制造业的产品全生命周期带来赋能与革新。

Altair 是计算智能领域的全球指引者之一,在仿真、高性能计算 (HPC) 和人工智能等领域提供软件和云解决方案,服务于16000多家全球企业,应用行业包括汽车、消费电子、航空航天、能源、机车车辆、造船、国防军工、金融、零售等。

近期,Altair被全球工业软件指引者西门子收购,成为西门子数字化工业软件(Siemens Digital Industries Software)旗下成员,进一步巩固西门子在仿真和工业人工智能领域的全球指引者地位,其技术正与西门子Xcelerator解决方案进行深度整合。

更多内容欢迎关注 AltairChina

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值