
人工智能
Always_ease
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
图像特征提取:局部二值模式(LBP)
一、LBP算子 局部二值模式是一种灰度范围内的非参数描述子,具有对灰度变化不敏感且计算速度快等优点[1].LBP算子利用中心像素的领域像素与中心像素的比较结果进行编码。常见的LBP_{P,R}模式有: P,R分别代表领域像素点的个数和领域半径,上图所示分别为8点半径为1;16点半径为2;8点半径为2的模式。 LBP算子计算实例如下:从左上角开始,沿顺时针方向依次与中心像素进行比较,如果大于等于中心像素的取值为1,否则为0.得到一个01序列,我们视为一个二进制数。将二进制数转化...转载 2020-08-10 16:18:58 · 1589 阅读 · 0 评论 -
【神经网络】一些参考的知识整理
神经网络构架:25张图了解神经网络常用模型 RNN结构:层之间的神经元也建立权连接 随着序列的不断推进,前面的隐层将会影响后面的隐层。图中O代表输出,y代表样本给出的确定值,L代表损失函数,我们可以看到,“损失“也是随着序列的推荐而不断积累的 神经网络细节:理解dropout Dropout实现(向前传播向后传播) Receptive field(感受野) BP神经网络讲解...转载 2018-08-21 11:39:48 · 294 阅读 · 0 评论 -
【转+整理】SDG,动量,Adam优化算法
参考博客:深度学习最常用的算法,一文看懂各种神经网络优化算法:从梯度下降到Adam方法 SDG1、定义: 随机梯度下降(Stochastic gradient descent,SGD)对每个训练样本进行参数更新,每次执行都进行一次更新,且执行速度更快。2、公式: θ=θ−η⋅∇(θ) × J(θ;x(i);y(i)),其中 η 是学习率,x(i)...转载 2018-08-21 17:16:35 · 4683 阅读 · 0 评论 -
【神经网络】GAN原理总结,CatGAN
定义及原理: 生成器 (G)generator:接收一个随机的噪声z(随机数),通过这个噪声生成图像。G的目标就是尽量生成真实的图片去欺骗判别网络D。 判别器(D) discriminator:对接收的图片进行真假判别。它的输入参数是x,x代表一张图片,输出D(x)代表x为真实图片的概率,如果为1,就代表100%是真实的图片,而输出为0,就代表不可能是真实的...转载 2018-09-03 20:32:45 · 5570 阅读 · 0 评论 -
ResNet原理及代码
1.ResNet意义深度残差网络,它允许网络尽可能的加深。最后的输出是 y=F(x)+x。残差指的就是F(x)部分 。理论上,对于“随着网络加深,准确率下降”的问题,Resnet提供了两种选择方式,也就是identity mapping和residual mapping,如果网络已经到达最优,继续加深网络,residual mapping将被push为0,只剩下identity mappi...转载 2018-10-24 14:48:41 · 3136 阅读 · 0 评论 -
迁移学习Transfer Learning
1、简介一句话概括:从以前的任务当中去学习知识(knowledge)或经验,并应用于新的任务当中。传统的机器学习方法包括有监督学习、无监督学习和半监督学习,针对不完全数据,有监督和半监督学习还有相应的变形,如处理噪声分类标签问题以及代价敏感学习。然而,这些方法的大多数都假设已标注数据与未标注数据的分布是相同的。与之相反的是,迁移学习允许源空间、任务空间,并且在测试集和训练集中的分布是不同的...转载 2018-11-02 12:35:53 · 406 阅读 · 0 评论 -
【GANs】教程、笔记及总结
【GANs学习笔记】(一)初步了解GANs【GANs学习笔记】(四)GANs的缺陷1、generator中的最小化的过程不一定是在最小化两者数据之间的JS divergence距离【GANs学习笔记】(六)JS Divergence不是最好的Divergence1、JS divergence是通过discriminator计算出来的,而discriminator的本质是binary...转载 2019-03-22 16:56:09 · 841 阅读 · 0 评论