491. Increasing Subsequences**

本文介绍了一种通过回溯算法找出整数数组中所有不同可能的递增子序列的方法,长度至少为2。示例输入[4,6,7,7],输出包括[[4,6],[4,7],[4,6,7],[4,6,7,7],[6,7],[6,7,7],[7,7],[4,7,7]]等。考虑到数组可能包含重复元素,且长度不超过15。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given an integer array, your task is to find all the different possible increasing subsequences of the given array, and the length of an increasing subsequence should be at least 2 .

Example:

Input: [4, 6, 7, 7]
Output: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]]

Note:

  1. The length of the given array will not exceed 15.
  2. The range of integer in the given array is [-100,100].
  3. The given array may contain duplicates, and two equal integers should also be considered as a special case of increasing sequence.
public class Solution {
    public List<List<Integer>> findSubsequences(int[] nums) {
        Set<List<Integer>> list = new HashSet<List<Integer>>();
        backtrack(list,new ArrayList<>(),nums,0);
        return new ArrayList(list);
    }
    private void backtrack(Set<List<Integer>> list, List<Integer> tempList, int[] nums,int start){
        if (tempList.size()>1) list.add(new ArrayList<>(tempList));
        for(int i=start;i<nums.length;i++){
            if(tempList.size()==0||tempList.get(tempList.size()-1)<=nums[i]){
               tempList.add(nums[i]);
               backtrack(list,tempList,nums,i+1);
               tempList.remove(tempList.size()-1);
            }
        }
    }
}

总结:万变不离其宗,但是几天没看就生疏了。


<think>嗯,用户遇到了几个Python运行时和积分警告,还有结果是nan。我得一步步分析可能的原因。 首先看RuntimeWarning: invalid value encountered in sqrt。这说明在计算平方根时,里面的值可能是负数了。比如,当y²加上某个项后结果变成负数,sqrt就会有问题。这时候需要检查mh_sq(x)/T²和mG_sq(x)/T²的值是否可能为负。可能x或T的取值范围有问题,或者函数mh_sq、mG_sq的实现有误,导致返回了负数。 然后是IntegrationWarning,提到积分达到了最大分割数50,可能积分区间有奇点或不连续点。这会导致积分结果不准确,进而可能引发后续计算出现nan。需要检查被积函数VT_h和VT_G在积分区间内的行为,是否有剧烈震荡、不连续或奇异点,比如在0附近或者无穷远处的收敛性。 另外,用户提到结果是nan,可能是在积分过程中出现了无效值,比如积分结果本身发散,或者后续运算中除以零等操作。需要检查积分的结果是否被正确捕获和处理,比如是否有对积分结果进行数学运算时出现非法操作。 可能的解决步骤包括: 1. 检查mh_sq和mG_sq函数,确保它们的输出非负,特别是在给定的x和T范围内。 2. 在计算sqrt之前,添加条件判断,确保根号内的值非负,或者使用绝对值加注释处理。 3. 调整quad函数的参数,比如增加limit参数,提高最大分割数,允许更精细的积分计算。 4. 分割积分区间,特别是在可能存在奇异点的地方,分段积分,帮助quad函数更好地处理。 5. 检查被积函数VT_h和VT_G在积分上限的行为,考虑是否应该使用不同的积分方法,比如对于无穷积分,使用特殊的积分器如scipy的quad的weight参数处理半无限区间。 6. 在积分调用周围添加异常捕获,打印中间变量,帮助定位问题点。 比如,在调用quad时,可以设置epsabs和epsrel参数,调整精度要求,或者使用更宽松的容差。同时,对于积分结果,检查其是否成功,或者是否返回了巨大的误差估计,这可能表明积分未收敛。此外,输出一些调试信息,比如在计算sqrt_term时打印输入参数,或者记录积分过程中的x和y值,以便复现问题。 另外,考虑数值稳定性问题,当T非常小时,mh_sq(x)/T²可能变得极大,导致数值计算溢出或下溢。需要确保输入的T值在合理范围内,或者对表达式进行数值上的调整,比如缩放变量,避免过大或过小的数值。 最后,如果问题依然存在,可能需要用符号计算或解析方法先简化被积函数,或者寻找是否存在变量替换,使得积分更容易数值处理。</think>在分析你提供的错误信息时,问题主要涉及两个警告类型:`RuntimeWarning`(平方根无效值)和`IntegrationWarning`(积分不收敛)。以下是逐步分析及解决方案: --- ### 一、`RuntimeWarning: invalid value encountered in sqrt` #### 根本原因 当计算形如$\sqrt{y^2 + m^2(x)/T^2}$时,可能出现以下问题: 1. $m^2(x)/T^2$为负数,导致根号内出现负值 2. $T$的值过小或为0,导致分母趋近于0,引发数值溢出 3. $y$的取值范围过大,导致数值不稳定 #### 诊断步骤 1. 检查函数`mh_sq(x)`和`mG_sq(x)`的定义,确保其返回值始终为非负数。 2. 输出`mh_sq(x)/T**2`和`mG_sq(x)/T**2`的具体数值,验证是否出现负值。 3. 添加保护性代码,例如: ```python argument = y**2 + mh_sq(x)/T**2 if argument < 0: argument = 0 # 或 raise ValueError sqrt_term = np.sqrt(argument) ``` --- ### 二、`IntegrationWarning: 积分不收敛` #### 根本原因 1. 被积函数在积分区间内存在**奇点**(如发散点、不连续点) 2. 积分收敛速度过慢,默认的50次分割无法满足精度要求 3. 被积函数在无穷区间(如$\int_0^\infty$)振荡剧烈或衰减缓慢 #### 解决方案 1. **增加分割次数**: ```python quad(..., limit=1000) # 将默认的50次分割提高到1000 ``` 2. **分割积分区间**: ```python result1 = quad(func, 0, 1, limit=100)[0] result2 = quad(func, 1, np.inf, limit=100)[0] total = result1 + result2 ``` 3. **替换积分方法**: ```python from scipy.integrate import quad, romberg result = romberg(lambda y: VT_h(x,y,T), 0, 100) # 有限区间替代无穷积分 ``` --- ### 三、最终结果为`nan` #### 根本原因 1. 积分过程中出现无效值(如$\sqrt{-1}$),导致结果被污染为`nan` 2. 积分发散,返回的误差值未正确处理 #### 调试建议 1. 在积分前添加`print`语句,输出关键变量的实时值: ```python def integrand(y): arg = y**2 + mh_sq(x)/T**2 print(f"y={y}, arg={arg}") # 定位负值来源 return VT_h(x, y, T) ``` 2. 捕获并处理异常: ```python try: result = quad(...) except FloatingPointError: print("Invalid value encountered") ``` --- ### 四、推荐优化实践 1. **变量替换**:对于$\int_0^\infty f(y) dy$,尝试替换$y = \tan(t)$,将积分区间转换为有限区间$[0, \pi/2)$。 2. **物理约束检查**:确保温度$T$和场变量$x$的物理取值范围合理(如$T>0$)。 3. **符号预处理**:通过SymPy等工具解析被积函数,检查是否存在解析奇点。 --- ### 示例代码修正 ```python from scipy.integrate import quad import numpy as np def safe_sqrt(expression): """保护性平方根计算""" return np.sqrt(np.maximum(expression, 0)) # 确保根号内非负 # 修改被积函数定义 def VT_h(x, y, T): mh_term = mh_sq(x) / T**2 sqrt_term = safe_sqrt(y**2 + mh_term) # ... 其他计算逻辑 # 提高积分精度并分割区间 result_part1 = quad(lambda y: VT_h(x,y,T), 0, 1, limit=1000)[0] result_part2 = quad(lambda y: VT_h(x,y,T), 1, np.inf, limit=1000)[0] total_result = result_part1 + result_part2 ``` 通过上述方法,可显著改善数值稳定性与积分收敛性。若问题持续,建议提供`mh_sq(x)`和`mG_sq(x)`的具体定义以便进一步分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值