原题链接
题意:
给你一个长度为n的数组,找出其最多能被分成几组,其中元素ai的值代表它所在的组最少有ai个元素。
思路:
贪心的选取每个元素,先对数组升序排列,贪心都可以用dp来做。这个题贪心和dp做起来都代码量都一样的。只不过是一个一直维护全局最优一个一直保证局部最优罢了。首先设计状态,dp[i]表示从1到i所能得到的最大组数。那么就有两种可能选取的情况了
- 第i个人可以进队,条件是i-a[i]>=0.
- 第i个人无法组成队伍。
那么状态转移方程就设计出来了。
d p [ i ] = m a x ( d p [ i − a [ i ] ] , d p [ i − 1 ] ) ( i > = a [ i ] ) dp[i]=max(dp[i-a[i]],dp[i-1]) (i>=a[i]) dp[i]=max(dp[i−a[i]],dp[i−1])(i>=a[i])
d p [ i ] = d p [ i − 1 ] ( i < a [ i ] ) dp[i]=dp[i-1](i<a[i]) dp[i]=dp[i−1](i<a[i])
都说贪心都可以用dp来做。。确实,dp显得思路更清晰,自我感觉是比贪心写着舒服。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int N=2e5+10;
int dp[N];
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
int t;
cin>>t;
while(t--)
{
int n;
cin>>n;
memset(dp,0,sizeof(0));
vector<int>a(n+1);
for(int i=1;i<=n;i++) cin>>a[i];
sort(a.begin()+1,a.end());
for(int i=1;i<=n;i++)
{
if(i>=a[i])
dp[i]=max(dp[i-a[i]]+1,dp[i-1]);
else dp[i]=dp[i-1];
}
cout<<dp[n]<<endl;
}
return 0;
}