原题链接
题目大意:
从(1,1)走到(n,m)为了使所有路径都成为回文路径,最少需要更改几个字符。
思路:
若要使路径回文的话,就要考虑回文串的性质,两边对称,那么就是说第一步和最后一步上的字符要相等,第二部与倒数第二步要相等,依次类推。
所以现在的问题就是判断当前所在方格是第几步。先想(1,1)是第几步,1+1-1-1=0第零步,(n,m)是第几步,n+m-1-1步。所以就可以发现每一个方格一定只能有一个步数,而这个步数是i+j-2,(从1,1走所以是减二)。根据回文串的性质,第i步一定和第m+n-2-i步相同,所以这两处的字符要么全是1,要么全是0。
所以我们可以记录一下每一步上字符1和0的数量。
细节看代码:
#include<cstdio>
#include<iostream>
#include<vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const int N=110;
int main()
{
int t;
cin>>t;
while(t--)
{
int n,m,x;
cin>>n>>m;
int f[N][10]={0};
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
cin>>x;
f[i+j-2][x]++;
}
int num=m+n-2,l=0,ans=0,r;
if(num&1) r=num>>1;
else r=(num>>1)-1;//偶数的话中间有一步是不受限的
for(int i=l;i<=r;i++)
{
ans+=min(f[i][1]+f[num-i][1],f[i][0]+f[num-i][0]);
}
cout<<ans<<endl;
}
return 0;
}