Educational Codeforces Round 89 (Rated for Div. 2)C. Palindromic Paths(思维)

本文探讨了在从(1,1)到(n,m)的所有路径中,为使其成为回文路径所需更改的最少字符数量问题。通过分析回文串的性质,即两端对称,文章提出了一种算法,用于计算每一步上字符1和0的数量,从而得出最小修改数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
原题链接
题目大意:
从(1,1)走到(n,m)为了使所有路径都成为回文路径,最少需要更改几个字符。
思路:
若要使路径回文的话,就要考虑回文串的性质,两边对称,那么就是说第一步和最后一步上的字符要相等,第二部与倒数第二步要相等,依次类推。
所以现在的问题就是判断当前所在方格是第几步。先想(1,1)是第几步,1+1-1-1=0第零步,(n,m)是第几步,n+m-1-1步。所以就可以发现每一个方格一定只能有一个步数,而这个步数是i+j-2,(从1,1走所以是减二)。根据回文串的性质,第i步一定和第m+n-2-i步相同,所以这两处的字符要么全是1,要么全是0。
所以我们可以记录一下每一步上字符1和0的数量。
细节看代码:

#include<cstdio>
#include<iostream>
#include<vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const int N=110;
int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        int n,m,x;
        cin>>n>>m;
        int f[N][10]={0};
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
        {
            cin>>x;
            f[i+j-2][x]++;
        }
        int num=m+n-2,l=0,ans=0,r;
        if(num&1) r=num>>1;
        else r=(num>>1)-1;//偶数的话中间有一步是不受限的
        for(int i=l;i<=r;i++)
        {
            ans+=min(f[i][1]+f[num-i][1],f[i][0]+f[num-i][0]);
        }
        cout<<ans<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值