R-CNN论文笔记

R-CNN是一种将深度学习与传统计算机视觉结合的目标检测方法,通过CNN提取区域提案的特征,使用SVM进行分类。它提高了PASCAL VOC2012的mAP超过30%,并在后续工作中引领了目标检测领域的变革。文章详细介绍了R-CNN的创新点、流程、训练和测试过程,并分析了其不足之处。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R-CNN 论文笔记

关于最新最全的目标检测论文,可以查看awesome-object-detection

《Rich feature hierarchies for accurate object detection and semantic segmentation》

CVPR 2014

推荐阅读

R-CNN:Regions + CNN

创新点

  • 使用CNN(ConvNet)对 region proposals 计算 feature vectors。从经验驱动特征(SIFT、HOG)到数据驱动特征(CNN feature map),提高特征对样本的表示能力。

  • 采用大样本下(ILSVRC)有监督预训练和小样本(PASCAL)微调(fine-tuning)的方法解决小样本难以训练甚至过拟合等问题。

注:ILSVRC其实就是众所周知的ImageNet的挑战赛,数据量极大;PASCAL数据集(包含目标检测和图像分割等),相对较小。

结果

在VOC2012中,将mAP(mean average percision)提高了30%以上

先看一下 PASCAL VOC历年(2007~2012)的检测冠军,可见DPM的统治力有多强大!(刚荣获CVPR 2018 Longuet-Higgins Prize)

但直到2013年 R-CNN的横空出世,一切都被打破了!
之后目标检测领域就进入 R-CNN系列的疯狂统治中……

R-CNN流程

R-CNN Pipeline

R-CNN Pipeline
图像来源: r-cnn-ilsvrc2013-workshop.pdf

题外话:R-CNN作为R-CNN系列的第一代算法,其实没有过多的使用“深度学习”思想,而是将“深度学习”和传统的“计算机视觉”的知识相结合。

比如pipeline中的第二步和第四步其实就属于传统的“计算机视觉”技术。使用selective search提取region proposals,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值