【数据分析】基于GEE的2000-2023年逐年归一化差值水分指数(NDMI)获取-以成都市为例

1、写在前面

  随着遥感技术的发展,归一化差值水分指数(NDMI, Normalized Difference Moisture Index)作为一种重要的遥感指标,越来越多地被应用于生态监测、农业管理和气候变化研究等领域。NDMI能够灵敏地反映植被冠层水分的时空动态变化,对于干旱监测、森林健康评估和湿地管理具有重要意义。
  Google Earth Engine(GEE)作为一个功能强大的云平台,能够快速处理大规模遥感数据,为研究人员提供了便利。利用GEE,我们可以高效地计算逐年NDMI,并将结果导出以支持进一步分析和应用。在本文中,我们将介绍NDMI的基本概念及其主要应用领域,详细讲解如何使用GEE平台计算逐年NDMI,并将结果下载到本地。通过这一过程,您将掌握在GEE中实现NDMI分析的关键步骤,为您的研究与实践提供有力支持。

2、归一化差值水分指数(NDMI)介绍

  归一化差值水分指数(NDMI, Normalized Difference Moisture Index)是一种基于遥感数据的指标,用于评估植被冠层的水分含量。通过使用 近红外(NIR)短波红外(SWIR)波段的反射率计算,NDMI能够灵敏地捕捉植被水分状况的变化,其计算公式如下:
在这里插入图片描述
  近红外波段(NIR): 健康植被对近

<think>好的,用户想用GEE计算并导出2002-2022桂林市的RSEI数据,并实现可视化。首先,我需要回忆一下RSEI的组成。RSEI包括四个指标:NDVI(植被指数)、LST(地表温度)、Wet(湿度指数)和NDBSI(建筑指数),通常通过主成分分析(PCA)来合成。 首先,用户需要定义研究区域,也就是桂林市的边界。根据引用[2]中的方法,可能需要使用GEE的行政区划数据来筛选桂林市的范围。比如,引用[2]提到通过筛选中国省市边界数据构建研究区域,这里应该类似,需要找到桂林市的FeatureCollection。 接下来是数据选择部分。RSEI通常使用Landsat数据,因为其空间分辨率较高。但引用[3]中提到使用MODIS数据,而用户的问题可能希望更高分辨率的结果,所以可能需要混合使用不同Landsat卫星的数据,比如Landsat 5、7、8,像引用[2]中那样分时间段处理。如,2002-2011Landsat 5,2012-2013用Landsat 7,2014-2022用Landsat 8。需要注意不同卫星的传感器差异,可能需要做辐射校正或波段调整。 然后,影像的过滤条件,比如云覆盖率,引用[2]中用了20%的云量过滤,这里可能也需要类似的处理。此外,时间范围设定为每,可能需要逐年处理,比如每生成一个合成影像,如中值合成。 接下来是计算各个指数。NDVI是近红外和红波段的差值比和值之和。LST需要根据热红外波段计算,可能需要大气校正,但GEE可能有现成的产品。Wet指数可能是指湿度分量,通常用缨帽变换的湿度分量,或者使用特定的波段组合。NDBSI是建筑指数,可能由SI(裸土指数)和IBI(建筑指数)组合而成,具体公式可能需要查阅相关文献。 然后,各指数归一化处理,将四个指标标准化到0-1范围,以便进行PCA分析。主成分分析在GEE中可以用ee.Array.covariance等方法实现,或者使用内置的PCA模块。通常RSEI使用第一主成分,但需要确认是否需要反转,因为有时第一主成分可能代表的是负面生态状况。 计算完每的RSEI后,需要逐年导出到Google Drive或Google Cloud Storage。导出时需要注意设置区域、尺度、分辨率等参数,确保数据正确。 可视化部分,需要在GEE中使用地图图层添加每的RSEI结果,设定颜色梯度,比如从红色到绿色表示生态指数从低到高。同时,可能需要生成时间序列图表,显示RSEI的际变化。 可能的挑战包括不同Landsat卫星数据的波段名称和位置不同,需要统一处理。如,Landsat 5的波段名称与Landsat 8不同,需要调整代码以适应不同卫星。此外,云遮蔽处理可能需要额外的步骤,如使用QA波段或现有的云掩膜算法。 用户可能还关心如何处理缺失份的数据,比如某一云覆盖过多导致无法获得有效影像,可能需要使用插值或其他方法填补。此外,RSEI的计算是否有现成的GEE脚本可供参考,引用[3]提到了一个博客可能有相关代码,可能需要参考该资源。 最后,确保代码高效运行,因为处理长时间序列的数据可能需要较大的计算资源,合理使用GEE的批量处理功能和导出任务,避免超时或内存不足的问题。</think>### 分步解决方案:GEE计算桂林市RSEI遥感生态指数 #### **一、数据准备** 1. **定义研究区域** ```javascript var roi = ee.FeatureCollection("users/your_account/Guilin_boundary"); // 或使用GEE内置行政区划数据筛选桂林市 var china = ee.FeatureCollection("USDOS/LSIB_SIMPLE/2017"); var guilin = china.filter(ee.Filter.eq('name', 'Guilin')); ``` 2. **数据选择与过滤** - 整合Landsat 5/7/8数据,按份分段处理: ```javascript var landsat5 = ee.ImageCollection("LANDSAT/LT05/C02/T1_L2") .filterDate('2002-01-01', '2012-01-01') .filterBounds(roi) .filter(ee.Filter.lte('CLOUD_COVER', 20)); var landsat7 = ee.ImageCollection("LANDSAT/LE07/C02/T1_L2") .filterDate('2012-01-01', '2014-01-01') .filterBounds(roi) .filter(ee.Filter.lte('CLOUD_COVER', 20)); var landsat8 = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2") .filterDate('2014-01-01', '2023-01-01') .filterBounds(roi) .filter(ee.Filter.lte('CLOUD_COVER', 20)); ``` #### **二、计算RSEI组成指数** 1. **NDVI(归一化植被指数)** $$ \text{NDVI} = \frac{\text{NIR} - \text{Red}}{\text{NIR} + \text{Red}} $$ ```javascript var addNDVI = function(image) { var nir = image.select('SR_B4'); // Landsat 5/7/8波段需对应调整 var red = image.select('SR_B3'); return image.addBands(nir.subtract(red).divide(nir.add(red)).rename('NDVI')); }; ``` 2. **LST(地表温度)** - 使用Landsat热红外波段(需辐射定标): $$ \text{LST} = \frac{\text{TIRS}}{10} $$ [^3] ```javascript var addLST = function(image) { var lst = image.select('ST_B6').multiply(0.1); return image.addBands(lst.rename('LST')); }; ``` 3. **Wet(湿度指数)** - 缨帽变换湿度分量公式: $$ \text{Wet} = 0.1511B_1 + 0.1972B_2 + 0.3283B_3 + 0.3408B_4 - 0.7117B_5 - 0.4559B_7 $$ 4. **NDBSI(建筑指数)** $$ \text{NDBSI} = \frac{\text{SI} + \text{IBI}}{2} $$ - SI(裸土指数): $$ \text{SI} = \frac{(B_5 + B_3) - (B_4 + B_1)}{(B_5 + B_3) + (B_4 + B_1)} $$ - IBI(建筑指数): $$ \text{IBI} = \frac{2B_5/(B_5 + B_4) - [B_2/(B_2 + B_5) + B_4/(B_4 + B_3)]}{2B_5/(B_5 + B_4) + [B_2/(B_2 + B_5) + B_4/(B_4 + B_3)]} $$ #### **三、主成分分析与RSEI合成** 1. **归一化处理** ```javascript var normalize = function(image) { var minMax = image.reduceRegion({ reducer: ee.Reducer.minMax(), geometry: roi, scale: 30, maxPixels: 1e13 }); return image.subtract(minMax.get('min')).divide(minMax.get('max').subtract(minMax.get('min'))); }; ``` 2. **PCA计算** ```javascript var calculateRSEI = function(year) { var annualCollection = mergedCollection.filter(ee.Filter.calendarRange(year, year, 'year')); var composite = annualCollection.median(); var pca = ee.Array(composite.select(['NDVI','LST','Wet','NDBSI']).toArray()).pca(); var rsei = ee.Image(pca.project([0])).rename('RSEI'); return rsei; }; ``` #### **四、数据导出与可视化** 1. **批量导出** ```javascript for (var y = 2002; y <= 2022; y++) { var rseiImg = calculateRSEI(y); Export.image.toDrive({ image: rseiImg, description: 'RSEI_Guilin_' + y, scale: 30, region: roi, maxPixels: 1e13 }); } ``` 2. **可视化** ```javascript var visParams = {min: -1, max: 1, palette: ['red', 'yellow', 'green']}; Map.addLayer(rseiImg.clip(roi), visParams, 'RSEI ' + year); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackson的生态模型

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值