前言
接上一篇,pandas.pivot_table是生成透视图,可以对数据进行行列的任意分组转置等操作,很方便。而crosstab则是一种特殊的透视表。
pandas.crosstab介绍
***crosstab***是交叉表,默认是计算分组频率的特殊透视表(默认的聚合函数是统计行列组合出现的次数)。如果指定了聚合函数则按聚合函数来统计,但是要指定values的值,指明需要聚合的数据。
函数原型如下:
pandas.crosstab(index, columns**,** values=None**,** rownames=None**,** colnames=None**,** aggfunc=None**,** margins=False**,** margins_name: str = 'All’, dropna: bool = True**,** normalize=False**)** → ‘DataFrame’
index:指定了要分组的列,最终作为行。
columns:指定了要分组的列,最终作为列。
values:指定了要聚合的值(由行列共同影响),需要指定aggfunc参数。
rownames:指定了行名称。
colnames:指定了列名称。
aggfunc:指定聚合函数。必须指定values的值。
margins