pytorch 验证GPU是否可用

该博客展示了如何在Python中使用PyTorch库来检测CUDA是否可用,并在GPU上运行简单的张量操作。通过`torch.cuda.is_available()`函数判断GPU状态,然后创建并打印在GPU上的张量,验证了GPU的运行环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代码

import torch
flag = torch.cuda.is_available()
print(flag)

ngpu= 1
# Decide which device we want to run on
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
print(device)
print(torch.cuda.get_device_name(0))
print(torch.rand(3,3).cuda())

运行结果如下表示GPU可用了

True
cuda:0
NVIDIA GeForce RTX 3060
tensor([[0.7567, 0.0458, 0.5618],
        [0.6300, 0.2157, 0.8634],
        [0.2069, 0.5930, 0.2276]], device='cuda:0')

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值