1)
主要是AI4S这个赛道还没真正起来,甚至在科学与工程计算领域的分量还远不如HPC
负载没有大的变化,性能功耗比又要严控,arm多合一的想法就很难往下走
2)
前不久,我看了十几篇用AI方法解偏微分方程的论文,有不少是瞎扯或者毫无意义,为发论文而编论文。比如有一篇论文说他们的模型很先进,求解纳维尔斯托克斯方程有非常好的性能。仔细看论文就知道,他们只考虑了低雷诺数条件。懂专业的人知道,他们在高雷诺数领域肯定失败了。因为高雷诺数意味着物理现象已经是确定性随机现象,参数的微小变动就导致完全不同的解。目前,看不出来人工智能对这样的问题有什么好办法。而低雷诺数领域的问题,本身就是小菜一碟,在求解方面没什么问题。
3)
👍👍,现在做学术真的要跟数学专业结合才行。昨天我跟我们学校农水专业的老师聊,他跟我介绍了他们学科的计算方向。比如土壤水则涉及到的条件就很多。类似包括蒸发、渗透、作物吸收、下雨,灌溉,还涉及到盐碱地改良的土壤清洗及排放等等,不是固定条件,条件更发散,则稀疏矩阵的计算量很大,他更需要CPU的计算,大概意思是这样。我听着似懂非懂,只能说大概了解。
4)
目前AI4S的主要方向是替代hpc的传统计算
但背后的原理是利用hpc产生的计算样本,通过自回归去拟合计算结果。
所以精度、泛化性是一个本质的问题。换言之,虽然快,但肯定不那么准。
对于设计类的问题,这种大概齐的结果有帮助;对于hpc本来就算不准的(比如计算生物学),也有帮助。但对于hpc方法dominant的领域,比如流体的模拟,就很难了。
即使是天气预报,也很难硬碰硬,时间一长误差就会累积,打不过传统hpc。
五年来,这个瓶颈问题没有得到解决。这是方法的本质决定的。可能还是要寻找更适合这种“大概齐”计算方法的场景,做成实锤。目前看,最大的出路还是在设计领域,比如新材料的设计、飞机外形设计等等。
5)
AI感觉更加适合快速完成重复性工作,输入输出都比较固定,如车牌识别之类。科学计算求解Ax=b,定义域在实数范围内,计算维度太大,感觉通用的AI4S会很难。估计万万亿参数的大模型也很难求解任意Ax=b。