通信原理概论复习笔记(1)

1 绪论

消息: 通信系统传输对象, 信息的载体和物理表现形式.
信息: 消息的有效内容和内涵.
信号: 消息的传输载体.

模拟通信: 信源 →\to 调制器 →\to 信道(噪声) →\to 解调器 →\to 信宿.
数字通信: 信源 →\to 信源编码(压缩+数字化) →\to 加密 →\to 信道编码(差错控制+信道复用) →\to 数字调制(信息载波) →\to 信道(噪声+干扰) →\to 数字解调(已调信号卸载信息) →\to 信道译码(最佳接收) →\to 解密 →\to 信源译码 →\to 信宿; 同步.
优点: 抗干扰能力强, 噪声不积累; 传输差错可控; 便于处理, 变换, 存储; 便于复用; 易于集成; 易于加密.
缺点: 需要较大的传输带宽; 对同步要求高.

信道信号特征: 模拟(连续); 数字(离散).
传输方式: 基带(未调制数字信号); 带通(已调信号).
复用方式: 频分; 时分; 码分; 波分; 空分.
传输方向和时间: 单工; 半双工; 全双工.

信息量: I(x)=−log⁡p(x)I(x)=-\log p(x)I(x)=logp(x); 底 222 为比特(bit), eee 为奈特(nat), 101010 为哈特莱(Hartley).
信息熵(平均信息量): H(X)=−∫−∞+∞f(x)log⁡f(x)dxH(X)=-\int_{-\infty}^{+\infty}f(x)\log f(x)\mathrm{d}xH(X)=+f(x)logf(x)dx.
性能指标: 有效性 - 传输带宽/频带利用率; 可靠性 - 输出信噪比/差错概率.
传输速率: 波特率(码元) RB=1TBR_B=\frac{1}{T_B}RB=TB1 (Baud); 比特率(信息) Rb=RBHR_b=R_BHRb=RBH (MMM 进制等概率时) =RBlog⁡M=R_B\log M=RBlogM (bps).
频带利用率: η=RBB\eta=\frac{R_B}{B}η=BRB (Baud/Hz); ηb=RbB\eta_b=\frac{R_b}{B}ηb=BRb (bps/Hz).
误码率 PeP_ePe; 误信率(误比特率) PbP_bPb; 222 进制时 Pb=PeP_b=P_ePb=Pe; M>2M>2M>2 进制时 Pb<PeP_b<P_ePb<Pe.

卷积定理: f(t)↔F(ω)f(t)\leftrightarrow F(\omega)f(t)F(ω), g(t)↔G(ω)  ⟹  f(t)∗g(t)↔F(ω)G(ω)g(t)\leftrightarrow G(\omega)\implies f(t)*g(t)\leftrightarrow F(\omega)G(\omega)g(t)G(ω)f(t)g(t)F(ω)G(ω), f(t)g(t)↔12πF(ω)∗G(ω)f(t)g(t)\leftrightarrow \frac{1}{2\pi}F(\omega)*G(\omega)f(t)g(t)2π1F(ω)G(ω); ω=2πf\omega=2\pi fω=2πf.

f(t)f(t)f(t)F(ω)F(\omega)F(ω)f(t)f(t)f(t)F(ω)F(\omega)F(ω)
δ(t)\delta(t)δ(t)111rect(tτ){\rm rect}(\frac{t}{\tau})rect(τt)τSa(ωτ2)\tau{\rm Sa}(\frac{\omega\tau}{2})τSa(2ωτ)
1112πδ(ω)2\pi\delta(\omega)2πδ(ω)W2πSa(Wt2)\frac{W}{2\pi}{\rm Sa}(\frac{Wt}{2})2πWSa(2Wt)rect(ωW){\rm rect}(\frac{\omega}{W})rect(Wω)
ejω0te^{j\omega_0t}ejω0t2πδ(ω−ω0)2\pi\delta(\omega-\omega_0)2πδ(ωω0)cos⁡(ω0t)\cos(\omega_0t)cos(ω0t)π[δ(ω+ω0)+δ(ω−ω0)]\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]π[δ(ω+ω0)+δ(ωω0)]
sgn(t){\rm sgn}(t)sgn(t)2jω\frac{2}{j\omega}2sin⁡(ω0t)\sin(\omega_0t)sin(ω0t)πj[δ(ω+ω0)−δ(ω+ω0)]\pi j[\delta(\omega+\omega_0)-\delta(\omega+\omega_0)]πj[δ(ω+ω0)δ(ω+ω0)]
jπt\frac{j}{\pi t}πtjsgn(ω){\rm sgn}(\omega)sgn(ω)e−α∣t∣e^{-\alpha|t|}eαt2αα2+ω2\frac{2\alpha}{\alpha^2+\omega^2}α2+ω22α
u(t)u(t)u(t)πδ(ω)+1jω\pi\delta(\omega)+\frac{1}{j\omega}πδ(ω)+1u(t)e−αtu(t)e^{-\alpha t}u(t)eαt1α+jω\frac{1}{\alpha+j\omega}α+1
δT(t)=∑−∞+∞δ(t−nT0)\delta_T(t)=\sum_{-\infty}^{+\infty}\delta(t-nT_0)δT(t)=+δ(tnT0)ω0∑−∞+∞δ(ω−nω0)\omega_0\sum_{-\infty}^{+\infty}\delta(\omega-n\omega_0)ω0+δ(ωnω0)u(t)te−αtu(t)te^{-\alpha t}u(t)teαt1(α+jω)2\frac{1}{(\alpha+j\omega)^2}(α+)21
At0(t02−∣τ∣)\frac{A}{t_0}(t_0^2-|\tau|)t0A(t02τ)At0Sa2ωt02At_0{\rm Sa}^2\frac{\omega t_0}{2}At0Sa22ωt0

冲激信号: ∫−∞+∞δ(t)dt=1\int_{-\infty}^{+\infty}\delta(t)\mathrm{d}t=1+δ(t)dt=1, δ(t)=0 (t≠0)\delta(t)=0\ (t\ne 0)δ(t)=0 (t=0); Δ(f)=1\Delta(f)=1Δ(f)=1.
单位阶跃函数: u(t)=0, t<0; 1, t≥0u(t)=0,\ t<0;\ 1,\ t\geq 0u(t)=0, t<0; 1, t0; u′(t)=δ(t)u'(t)=\delta(t)u(t)=δ(t).
抽样函数: f(t0)=∫−∞+∞f(t)δ(t−t0)dtf(t_0)=\int_{-\infty}^{+\infty}f(t)\delta(t-t_0)\mathrm{d}tf(t0)=+f(t)δ(tt0)dt, 其中 f(t)f(t)f(t)t0t_0t0 处连续.
采样函数: Sa(t)=sinc(t)=sin⁡tt{\rm Sa}(t)={\rm sinc}(t)=\frac{\sin t}{t}Sa(t)=sinc(t)=tsint; δ(t)=lim⁡t→∞kπSa(kt)\delta(t)=\lim_{t\to\infty}\frac{k}{\pi}{\rm Sa}(kt)δ(t)=limtπkSa(kt).
冲激响应: h(t)h(t)h(t); 输入单位冲激信号的零状态响应.
频率响应: h(t)↔H(f)h(t)\leftrightarrow H(f)h(t)H(f).

能量 E=∫−∞+∞s2(t)dtE=\int_{-\infty}^{+\infty}s^2(t)\mathrm{d}tE=+s2(t)dt; 平均功率 P=lim⁡T→∞1T∫−T2T2s2(t)dtP=\lim_{T\to\infty}\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}s^2(t)\mathrm{d}tP=limTT12T2Ts2(t)dt.
能量信号: 0<E<+∞0<E<+\infty0<E<+P=0P=0P=0.
功率信号: 0<P<+∞0<P<+\infty0<P<+E→+∞E\to+\inftyE+.
周期信号: s(t)=s(t+T)s(t)=s(t+T)s(t)=s(t+T); 必为功率信号.

能量信号频谱密度/连续谱: S(f)=∫−∞+∞s(t)e−2πjftdtS(f)=\int_{-\infty}^{+\infty}s(t)e^{-2\pi jft}\mathrm{d}tS(f)=+s(t)e2πjftdt; Fourier 变换; 单位 V/Hz.
能量谱密度: G(f)=∣S(f)∣2G(f)=|S(f)|^2G(f)=S(f)2.
能量(Parseval): E=∫−∞+∞s2(t)dt=∫−∞+∞G(f)dfE=\int_{-\infty}^{+\infty}s^2(t)\mathrm{d}t=\int_{-\infty}^{+\infty}G(f)\mathrm{d}fE=+s2(t)dt=+G(f)df; 实信号时 E=2∫0+∞G(f)dfE=2\int_0^{+\infty}G(f)\mathrm{d}fE=20+G(f)df.
自相关函数: R(τ)=∫−∞+∞s(t)s(t+τ)dtR(\tau)=\int_{-\infty}^{+\infty}s(t)s(t+\tau)\mathrm{d}tR(τ)=+s(t)s(t+τ)dt; R(−τ)=R(τ)R(-\tau)=R(\tau)R(τ)=R(τ), R(0)=ER(0)=ER(0)=E; R(τ)↔∣S(f)∣2=G(f)R(\tau)\leftrightarrow |S(f)|^2=G(f)R(τ)S(f)2=G(f).
互相关函数: R12(τ)=∫−∞+∞s1(t)s2(t+τ)dtR_{12}(\tau)=\int_{-\infty}^{+\infty}s_1(t)s_2(t+\tau)\mathrm{d}tR12(τ)=+s1(t)s2(t+τ)dt; R21(τ)=R12(−τ)R_{21}(\tau)=R_{12}(-\tau)R21(τ)=R12(τ); R12(τ)↔S1∗(f)S2(f)=S12(f)R_{12}(\tau)\leftrightarrow S_1^*(f)S_2(f)=S_{12}(f)R12(τ)S1(f)S2(f)=S12(f); S12(f)S_{12}(f)S12(f) 为互能量谱密度.

功率信号频谱/离散谱: Cn=1T∫−T2T2e−2πjnfts(t)dtC_n=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}e^{-2\pi jnft}s(t)\mathrm{d}tCn=T12T2Te2πjnfts(t)dt; Fourier 级数; C(nf):=CnC(nf):=C_nC(nf):=Cn 为复振幅, 模长为振幅, 角度为初相; fff 为基频, nfnfnf 为谐频; 单位 V.
周期信号: s(t)=∑n=−∞+∞Cne2πjnft, f=1Ts(t)=\sum_{n=-\infty}^{+\infty}C_ne^{2\pi jnft},\ f=\frac{1}{T}s(t)=n=+Cne2πjnft, f=T1; Fourier 级数.
离散功率谱: P=1T0∫−T02T02s2(t)dt=∑−∞+∞∣Cn∣2P=\frac{1}{T_0}\int^\frac{T_0}{2}_{-\frac{T_0}{2}}s^2(t)\mathrm{d}t=\sum^{+\infty}_{-\infty}|C_n|^2P=T012T02T0s2(t)dt=+Cn2.
连续功率谱/功率谱密度: P(f)=∑−∞+∞∣C(f)∣2δ(f−nf0)P(f)=\sum^{+\infty}_{-\infty}|C(f)|^2\delta(f-nf_0)P(f)=+C(f)2δ(fnf0).
功率: P=∫−∞+∞P(f)dfP=\int_{-\infty}^{+\infty}P(f)\mathrm{d}fP=+P(f)df.
自相关函数: R(τ)=lim⁡T→∞1T∫−T2T2s(t)s(t+τ)dtR(\tau)=\lim_{T\to\infty}\frac{1}{T}\int_{-\frac{T}{2}}^\frac{T}{2}s(t)s(t+\tau)\mathrm{d}tR(τ)=limTT12T2Ts(t)s(t+τ)dt; R(−τ)=R(τ)R(-\tau)=R(\tau)R(τ)=R(τ), R(0)=PR(0)=PR(0)=P; R(τ)↔P(f)R(\tau)\leftrightarrow P(f)R(τ)P(f).
特别为周期信号时 R(τ)↔P(f)R(\tau)\leftrightarrow P(f)R(τ)P(f).
互相关函数: R12(τ)=lim⁡T→∞1T∫−T2T2s1(t)s2(t+τ)dtR_{12}(\tau)=\lim_{T\to\infty}\frac{1}{T}\int_{-\frac{T}{2}}^\frac{T}{2}s_1(t)s_2(t+\tau)\mathrm{d}tR12(τ)=limTT12T2Ts1(t)s2(t+τ)dt; R21(τ)=R12(−τ)R_{21}(\tau)=R_{12}(-\tau)R21(τ)=R12(τ).
同周期时: R12(τ)=1T∫−T2T2s1(t)s2(t+τ)dtR_{12}(\tau)=\frac{1}{T}\int_{-\frac{T}{2}}^\frac{T}{2}s_1(t)s_2(t+\tau)\mathrm{d}tR12(τ)=T12T2Ts1(t)s2(t+τ)dt.

随机过程: 样本函数的集合; 随机变量的时间函数.
nnn 维分布函数: Fn({x1}i=1n; {ti}t=1n)=P{{ξ(ti)≤xi}i=1n}F_n(\{x_1\}_{i=1}^n;\ \{t_i\}_{t=1}^n)=P\{\{\xi(t_i)\leq x_i\}_{i=1}^n\}Fn({x1}i=1n; {ti}t=1n)=P{{ξ(ti)xi}i=1n}.
nnn 维概率密度函数: fn({x1}i=1n; {ti}t=1n)=∂Fn({x1}i=1n; {ti}t=1n)∏i=1n∂xif_n(\{x_1\}_{i=1}^n;\ \{t_i\}_{t=1}^n)=\frac{\partial F_n(\{x_1\}_{i=1}^n;\ \{t_i\}_{t=1}^n)}{\prod_{i=1}^n\partial x_i}fn({x1}i=1n; {ti}t=1n)=i=1nxiFn({x1}i=1n; {ti}t=1n).
数学期望(统计平均): E[ξ(t)]:=∫−∞+∞xf1(x,t)dx:=a(t)E[\xi(t)]:=\int_{-\infty}^{+\infty}xf_1(x,t)\mathrm{d}x:=a(t)E[ξ(t)]:=+xf1(x,t)dx:=a(t).
方差: D[ξ(t)]:=E[ξ(t)−a(t)]2=E[ξ2(t)]−a2(t)D[\xi(t)]:=E[\xi(t)-a(t)]^2=E[\xi^2(t)]-a^2(t)D[ξ(t)]:=E[ξ(t)a(t)]2=E[ξ2(t)]a2(t).
自相关函数: R(t1,t2):=E[ξ(t1)ξ(t2)]R(t_1,t_2):=E[\xi(t_1)\xi(t_2)]R(t1,t2):=E[ξ(t1)ξ(t2)].
互相关函数: Rξη(t1,t2):=E[ξ(t1)η(t2)]R_{\xi\eta}(t_1,t_2):=E[\xi(t_1)\eta(t_2)]Rξη(t1,t2):=E[ξ(t1)η(t2)].
协方差: B(t1,t2):=E[ξ(t1)−a(t1)][ξ(t2)−a(t2)]=R(t1,t2)−a(t1)a(t2)B(t_1,t_2):=E[\xi(t_1)-a(t_1)][\xi(t_2)-a(t_2)]=R(t_1,t_2)-a(t_1)a(t_2)B(t1,t2):=E[ξ(t1)a(t1)][ξ(t2)a(t2)]=R(t1,t2)a(t1)a(t2).

严格平稳: 一维分布和概率密度时间无关, 二维分布只与时间间隔 τ\tauτ 有关.
广义平稳: 均值与时间无关 E[ξ(t)]=aE[\xi(t)]=aE[ξ(t)]=a, 自相关函数只与时间间隔有关 R(t1,t2)=R(τ)R(t_1,t_2)=R(\tau)R(t1,t2)=R(τ).
各态遍历性/历经性: 平稳且时间平均等于统计平均 a=aˉ:=x(t)‾:=lim⁡T→∞1T∫−T2T2x(t)dta=\bar{a}:=\overline{x(t)}:=\lim_{T\to\infty}\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x(t)\mathrm{d}ta=aˉ:=x(t):=limTT12T2Tx(t)dt, R(τ)=R(τ)‾:=x(t)x(t+τ)‾:=lim⁡T→∞1T∫−T2T2x(t)x(t+τ)dtR(\tau)=\overline{R(\tau)}:=\overline{x(t)x(t+\tau)}:=\lim_{T\to\infty}\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x(t)x(t+\tau)\mathrm{d}tR(τ)=R(τ):=x(t)x(t+τ):=limTT12T2Tx(t)x(t+τ)dt.
自相关函数: R(τ)=E[ξ(t)ξ(t+ξ)]R(\tau)=E[\xi(t)\xi(t+\xi)]R(τ)=E[ξ(t)ξ(t+ξ)]; R(τ)=R(−τ)R(\tau)=R(-\tau)R(τ)=R(τ); ∣R(τ)∣≤R(0)=E[ξ2(t)]|R(\tau)|\leq R(0)=E[\xi^2(t)]R(τ)R(0)=E[ξ2(t)] 平均功率和上界; R(∞)=E2[ξ(t)]=a2R(\infty)=E^2[\xi(t)]=a^2R()=E2[ξ(t)]=a2 直流功率; R(0)−R(∞)=σ2R(0)-R(\infty)=\sigma^2R(0)R()=σ2 交流功率(方差).
功率谱密度: 所有样本功率谱的统计平均 Pξ(f):=E[Pf(f)]=lim⁡T→∞E[FT(f)]2TP_\xi(f):=E[P_f(f)]=\lim_{T\to\infty}\frac{E[F_T(f)]^2}{T}Pξ(f):=E[Pf(f)]=limTTE[FT(f)]2; Pξ(f)≥0P_\xi(f)\geq 0Pξ(f)0, Pξ(−f)=Pξ(f)P_\xi(-f)=P_\xi(f)Pξ(f)=Pξ(f), R(0)=∫−∞+∞Pξ(f)dfR(0)=\int_{-\infty}^{+\infty}P_\xi(f)\mathrm{d}fR(0)=+Pξ(f)df.
Wiener-Khinchine: R(τ)↔Pξ(f)R(\tau)\leftrightarrow P_\xi(f)R(τ)Pξ(f).

Gauss: nnn 维分布只依赖于各项均值, 方差, 归一化协方差; 广义平稳时严格平稳; 不同时刻不相关时统计独立; 线性变换后仍为 Gauss 过程.
概率密度函数: f(x)=12πσexp⁡{−(x−a)22σ2}f(x)=\frac{1}{\sqrt{2\pi}\sigma}\exp\{-\frac{(x-a)^2}{2\sigma^2}\}f(x)=2πσ1exp{2σ2(xa)2}; f(a+x)=f(a−x)f(a+x)=f(a-x)f(a+x)=f(ax); ∫−∞af(x)dx=∫a+∞f(x)dx=12\int_{-\infty}^a f(x)\mathrm{d}x=\int_a^{+\infty} f(x)\mathrm{d}x=\frac{1}{2}af(x)dx=a+f(x)dx=21.
误差函数: erf(x)=2π∫0xe−t2dt{\rm erf}(x)=\frac{2}{\sqrt{\pi}}\int_0^x e^{-t^2}\mathrm{d}terf(x)=π20xet2dt; erf(0)=0{\rm erf}(0)=0erf(0)=0, erf(+∞)=1{\rm erf}(+\infty)=1erf(+)=1, erf(−x)=−erf(x){\rm erf}(-x)=-{\rm erf}(x)erf(x)=erf(x), 单调递增; x≪1x\ll 1x1erf(x)≈2xπ{\rm erf}(x)\approx\frac{2x}{\sqrt{\pi}}erf(x)π2x.
补误差函数: erfc(x)=1−erf(x){\rm erfc}(x)=1-{\rm erf}(x)erfc(x)=1erf(x); x≫1x\gg 1x1erfc(x)≈e−2x2xπ{\rm erfc}(x)\approx\frac{e^{-2x^2}}{x\sqrt{\pi}}erfc(x)xπe2x2.
分布函数: F(x)=12+12erf(x−a2σ)F(x)=\frac{1}{2}+\frac{1}{2}{\rm erf}(\frac{x-a}{\sqrt{2}\sigma})F(x)=21+21erf(2σxa).

线性系统输入输出
时域νi(t)\nu_i(t)νi(t)卷积 νo(t)=νi(t)∗h(t):=∫−∞+∞νi(τ)h(t−τ)dτ\nu_o(t)=\nu_i(t)*h(t):=\int_{-\infty}^{+\infty}\nu_i(\tau)h(t-\tau)\mathrm{d}\tauνo(t)=νi(t)h(t):=+νi(τ)h(tτ)dτ
频域Vi(f)V_i(f)Vi(f)Vo(f)=H(f)Vi(f)V_o(f)=H(f)V_i(f)Vo(f)=H(f)Vi(f)
概率分布平稳/高斯平稳/高斯
数学期望E[ξi(t)]=aE[\xi_i(t)]=aE[ξi(t)]=a$E[\xi_0(t)]=aH(0)\$ H(0)=∫−∞+∞h(τ)dτH(0)=\int_{-\infty}^{+\infty}h(\tau)\mathrm{d}\tauH(0)=+h(τ)dτ 为直流增益
自相关函数Ri(τ)R_i(\tau)Ri(τ)Ro(τ)=∫−∞+∞∫−∞+∞h(α)h(β)Ri(τ+α−β)dαdβR_o(\tau)=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}h(\alpha)h(\beta)R_i(\tau+\alpha-\beta)\mathrm{d}\alpha\mathrm{d}\betaRo(τ)=++h(α)h(β)Ri(τ+αβ)dαdβ
功率谱密度Pi(f)P_i(f)Pi(f)Po(f)=∣H(f)∣2Pi(f)P_o(f)=|H(f)|^2P_i(f)Po(f)=H(f)2Pi(f)

窄带: Δf≪fc\Delta f\ll f_cΔffc, fc≫0f_c\gg 0fc0; 可视为包络和相位随机缓变的正弦波, 即 ξ(t)=aξ(t)cos⁡[ωct+φξ(t)]\xi(t)=a_\xi(t)\cos[\omega_c t+\varphi_\xi(t)]ξ(t)=aξ(t)cos[ωct+φξ(t)], 其中 aξ(t)>0a_\xi(t)>0aξ(t)>0 为随机包络, φξ(t)\varphi_\xi(t)φξ(t) 为随机相位, ωc\omega_cωc 为正弦波中心角频率; 展开后 ξ(t)=ξc(t)cos⁡ωct−ξs(t)sin⁡ωct\xi(t)=\xi_c(t)\cos\omega_c t-\xi_s(t)\sin\omega_c tξ(t)=ξc(t)cosωctξs(t)sinωct, 其中 ξc(t)=aξ(t)cos⁡φξ(t)\xi_c(t)=a_\xi(t)\cos\varphi_\xi(t)ξc(t)=aξ(t)cosφξ(t) 为同向分量, ξs(t)=aξ(t)sin⁡φξ(t)\xi_s(t)=a_\xi(t)\sin\varphi_\xi(t)ξs(t)=aξ(t)sinφξ(t) 为正交分量.
Gauss 平稳时, 同向分量和正交分量也 Gauss 平稳; 同时均值为 000 时, 同向分量和正交分量独立同分布且均值为 000.
包络一维分布为 Rayleigh 分布 f(aξ)=aξσξ2exp⁡{−aξ22σξ2} (aξ≥0)f(a_\xi)=\frac{a_\xi}{\sigma_\xi^2}\exp\{-\frac{a_\xi^2}{2\sigma_\xi^2}\}\ (a_\xi\geq 0)f(aξ)=σξ2aξexp{2σξ2aξ2} (aξ0), 相位一维分布为均匀分布 f(φξ)=12π (0≤φξ≤2π)f(\varphi_\xi)=\frac{1}{2\pi}\ (0\leq\varphi_\xi\leq 2\pi)f(φξ)=2π1 (0φξ2π), 统计独立.

正弦波加窄带 Gauss 噪声: r(t)=Acos⁡(ωct+θ)+n(t)r(t)=A\cos(\omega_c t+\theta)+n(t)r(t)=Acos(ωct+θ)+n(t); 类似地 r(t)=zc(t)cos⁡ωct−zs(t)sin⁡ωctr(t)=z_c(t)\cos\omega_c t-z_s(t)\sin\omega_c tr(t)=zc(t)cosωctzs(t)sinωct, 其中 zc(t)=Acos⁡θ+nc(t)z_c(t)=A\cos\theta+n_c(t)zc(t)=Acosθ+nc(t), zs(t)=Asin⁡θ+ns(t)z_s(t)=A\sin\theta+n_s(t)zs(t)=Asinθ+ns(t), 包络 z(t)=zc2(t)+zs2(t)z(t)=\sqrt{z_c^2(t)+z_s^2(t)}z(t)=zc2(t)+zs2(t).
包络一维分布为广义 Rayleigh 分布(Rice 分布) f(z)=zσn2exp⁡{−12σn2(z2+A2)}I0(Azσn2)f(z)=\frac{z}{\sigma_n^2}\exp\{-\frac{1}{2\sigma_n^2}(z^2+A^2)\}I_0(\frac{Az}{\sigma_n^2})f(z)=σn2zexp{2σn21(z2+A2)}I0(σn2Az); 其中 I0(x)I_0(x)I0(x) 为 Bessel 函数, x≥0x\geq 0x0 时单调递增且 I0(0)=1I_0(0)=1I0(0)=1; A→0A\to 0A0 即信噪比 γ=A22σξ2→0\gamma=\frac{A^2}{2\sigma_\xi^2}\to 0γ=2σξ2A20 时退化为 Rayleigh 分布; 信噪比 γ\gammaγ 较大时近似为 Gauss 分布.

白噪声: 功率谱密度服从均匀分布; Pξ(ω)=n02P_\xi(\omega)=\frac{n_0}{2}Pξ(ω)=2n0, Rτ=n02δ(t)R_{\tau}=\frac{n_0}{2}\delta(t)Rτ=2n0δ(t), P=R(0)=∞P=R(0)=\inftyP=R(0)=; 统计独立, 即仅在 τ=0\tau=0τ=0 时相关.
Gauss 白噪声: 不同时刻上互不相关且统计独立.
低通 (lowpass) 白噪声: Pn(f)=n02 (∣f∣≤fH)P_n(f)=\frac{n_0}{2}\ (|f|\leq f_H)Pn(f)=2n0 (ffH); R(τ)=n0fHSa(2πfHτ)R(\tau)=n_0f_H{\rm Sa}(2\pi f_H\tau)R(τ)=n0fHSa(2πfHτ).
带通 (bandpass) 白噪声: Pn(f)=n02 (fc−B2≤∣f∣≤fc+B2)P_n(f)=\frac{n_0}{2}\ (f_c-\frac{B}{2}\leq|f|\leq f_c+\frac{B}{2})Pn(f)=2n0 (fc2Bffc+2B); H(f)=1 (fc−B2≤∣f∣≤fc+B2)H(f)=1\ (f_c-\frac{B}{2}\leq|f|\leq f_c+\frac{B}{2})H(f)=1 (fc2Bffc+2B); R(τ)=n0BSa(πBτ)cos⁡2πfcτR(\tau)=n_0B{\rm Sa}(\pi B\tau)\cos 2\pi f_c\tauR(τ)=n0BSa(πBτ)cos2πfcτ; 平均功率 N:=P[n(t)]=n0BN:=P[n(t)]=n_0BN:=P[n(t)]=n0B, 其中 BBB 为噪声等效带通.

无线信道: 利用电磁波.
地波: 低频(2MHz 以下); 绕射.
天波: 高频(2MHz~30MHz); 电离层反射; 有无法到达的寂静区.
视线: 超高频(30MHz 以上); 穿透电离层; h=D28r≈D250h=\frac{D^2}{8r}\approx\frac{D^2}{50}h=8rD250D2.
增加视线传播距离途径: 微波中继; 卫星中继; 电离层散射; 对流层散射; 流星余迹散射.
接收功率: PR=λ2PTGTGR16π2d2P_R=\frac{\lambda^2P_TG_TG_R}{16\pi^2d^2}PR=16π2d2λ2PTGTGR, 其中 PrP_rPr 为发射功率, GTG_TGT 为发射天线增益, GRG_RGR 为接收天线增益, ddd 为传播距离, λ\lambdaλ 为波长(m).
传播损耗: Lfr=PTPR=16π2d2λ2GTGRL_{fr}=\frac{P_T}{P_R}=\frac{16\pi^2d^2}{\lambda^2G_TG_R}Lfr=PRPT=λ2GTGR16π2d2; 发射功率与接收功率之比.
有线信道: 对称电缆(双绞线); 同轴电缆; 光纤.

调制信道: e0(t)=f[ei(t)]+n(t)e_0(t)=f[e_i(t)]+n(t)e0(t)=f[ei(t)]+n(t); 其中 n(t)n(t)n(t) 为加性噪声; f[ei(t)]=k(t)∗ei(t)f[e_i(t)]=k(t)*e_i(t)f[ei(t)]=k(t)ei(t), k(t)k(t)k(t) 为乘性干扰; H(ω)=∣H(ω)∣eφ(ω)jH(\omega)=|H(\omega)|e^{\varphi(\omega)j}H(ω)=H(ω)eφ(ω)j, ∣H(ω)∣|H(\omega)|H(ω) 为幅频特性, φ(ω)\varphi(\omega)φ(ω) 为相频特性.
恒惨信道: 传输特性随时间不变或缓变; 无失真时, ∣H(ω)∣=K|H(\omega)|=KH(ω)=K 为固定衰减, φ(ω)=tdω\varphi(\omega)=t_d\omegaφ(ω)=tdω 为固定时延, 群时延 τ(ω)=dϕ(ω)dω=td\tau(\omega)=\frac{\mathrm{d}\phi(\omega)}{\mathrm{d}\omega}=t_dτ(ω)=dωdϕ(ω)=td; 冲激响应 h(t)=Kδ(t−td)h(t)=K\delta(t-t_d)h(t)=(ttd).
频幅失真: 波形失真 →\to 信噪比 SN=Sn0B{\rm SN}=\frac{S}{n_0B}SN=n0BS 下降, 信道容量减小; 码间串扰 →\to 误码率增大.
相频失真: 视频信号影响大, 语音信号影响小; 码间串扰 →\to 误码率增大.
随参信道: 传输特性随时间随机快变; 衰减随时间变化, 时延随时间变化; 多径传播(接收合成) →\to Rayleigh 型衰落(包络缓变), 频率弥散, 频率选择性衰落.
Acos⁡ω0t→R(t)=Xc(t)cos⁡ω0t−Xs(t)sin⁡ω0t=V(t)cos⁡[ω0t+φ(t)]A\cos\omega_0 t\to R(t)=X_c(t)\cos\omega_0 t-X_s(t)\sin\omega_0 t=V(t)\cos[\omega_0 t+\varphi(t)]Acosω0tR(t)=Xc(t)cosω0tXs(t)sinω0t=V(t)cos[ω0t+φ(t)].
减小选择性衰落: Δf=1τm\Delta f=\frac{1}{\tau_m}Δf=τm1; 带宽 Bs=(13∼15)ΔfB_s=(\frac{1}{3}\sim\frac{1}{5})\Delta fBs=(3151)Δf, 即码元宽度 Ts=(3∼5)τmT_s=(3\sim 5)\tau_mTs=(35)τm.
编码信道: 二进制无记忆; 转移概率; P(0/0)=1−P(1/0)P(0/0)=1-P(1/0)P(0/0)=1P(1/0), P(1/1)=1−P(0/1)P(1/1)=1-P(0/1)P(1/1)=1P(0/1); Pe=P(0)P(1/0)+P(1)P(0/1)P_e=P(0)P(1/0)+P(1)P(0/1)Pe=P(0)P(1/0)+P(1)P(0/1).

信道加性噪声 n(t)n(t)n(t): Gauss 白噪声; Pn(f)=n02P_n(f)=\frac{n_0}{2}Pn(f)=2n0, Rn(τ)=n02δ(t)R_n(\tau)=\frac{n_0}{2}\delta(t)Rn(τ)=2n0δ(t), fn(ν)=12πσnexp⁡{−ν22σn2}f_n(\nu)=\frac{1}{\sqrt{2\pi}\sigma_n}\exp\{-\frac{\nu^2}{2\sigma_n^2}\}fn(ν)=2πσn1exp{2σn2ν2}.
热噪声: 电阻性元器件中电子热运动产生, 起伏噪声; 均匀分布在 0∼10120\sim 10^{12}01012 Hz 范围; Gauss 白噪声; 电压有效值 V=4kTRBV=\sqrt{4kTRB}V=4kTRB (V), 其中 Boltzmann 常数 k=1.38×10−23k=1.38\times 10^{-23}k=1.38×1023 (J/K).
窄带 Gauss 噪声: n(t)n(t)n(t) 通过 BPF (带通滤波器); 等效带宽 Bn=∫0+∞Pn(f)dfPn(f0)B_n=\frac{\int_0^{+\infty}P_n(f)\mathrm{d}f}{P_n(f_0)}Bn=Pn(f0)0+Pn(f)df, 即通过带宽为 BnB_nBn 的矩形滤波器和实际接收滤波器的噪声功率相等; 平均功率 N=∫−∞+∞Pn(f)dfN=\int_{-\infty}^{+\infty}P_n(f)\mathrm{d}fN=+Pn(f)df.

信道容量: 无差错传输时最大平均信息速率.
无噪声信息熵: H(x)=−∫−∞+∞p(x)log⁡2p(x)dxH(x)=-\int_{-\infty}^{+\infty}p(x)\log_2 p(x)\mathrm{d}xH(x)=+p(x)log2p(x)dx.
信道噪声损失信息熵 (条件熵): H(x∣y)=−∫−∞+∞p(y)dy∫−∞+∞p(x∣y)log⁡2p(x∣y)dxH(x|y)=-\int_{-\infty}^{+\infty}p(y)\mathrm{d}y\int_{-\infty}^{+\infty}p(x|y)\log_2 p(x|y)\mathrm{d}xH(xy)=+p(y)dy+p(xy)log2p(xy)dx.
信息传输速率: R=r[H(x)−H(x∣y)]R=r[H(x)-H(x|y)]R=r[H(x)H(xy)] (bps), rrr 为符号速率.
信道容量: Ct=max⁡RC_t=\max RCt=maxR (bps), 即 C=max⁡P(X)[H(x)−H(x∣y)]C=\max_{P(X)}[H(x)-H(x|y)]C=maxP(X)[H(x)H(xy)] (b/符号).
Shannon: C=Blog⁡2(1+SN)C=B\log_2(1+\frac{S}{N})C=Blog2(1+NS) (bps), 其中 SSS 为信号平均功率 (W), BBB 为带宽 (Hz), N=n0BN=n_0BN=n0B 为噪声功率, n0n_0n0 为噪声单边功率谱密度, SN\frac{S}{N}NS 为信噪比; 信噪比与带宽给定时信息传输速率理论极限.
结论: Rb≤CR_b\leq CRbC 时总能找到信道编码方式实现无差错传输; Rb>CR_b>CRb>C 时则不能实现无差错传输; 增加 SSS 或减小 n0n_0n0 时可增加 CCC, 特别 S→∞S\to\inftySn0→0n_0\to 0n00C→∞C\to\inftyC; 增加 BBB 时可增加 CCC, 但 B→∞B\to\inftyBC→log⁡2eSn0≈1.44Sn0C\to\log_2 e\frac{S}{n_0}\approx 1.44\frac{S}{n_0}Clog2en0S1.44n0S; 给定 CCC 时, SN\frac{S}{N}NSBBB 反向变动 (可互换).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值