30、多人版《止不住》游戏的逆向近似算法

多人版《止不住》游戏的逆向近似算法

1. 引言

逆向分析在处理具有完美信息的收敛、确定性、有限和两人零和游戏方面取得了成功,例如跳棋和阿瓦里棋。然而,它在概率游戏中的应用通常局限于游戏图表示为无环的情况,如大富翁骰子游戏和单人版大富翁骰子游戏,不过“猪”游戏是个显著的例外。

我们关注具有循环图表示的概率游戏,尤其对《止不住》游戏感兴趣。此前我们已成功解决了单人版和双人版的《止不住》游戏。本文将研究多人版(超过两人)的《止不住》游戏,并提出一种逆向近似算法,将多维牛顿法与逆向分析相结合来解决该问题。此方法也适用于其他一些概率游戏的多人版本,如“猪”“疯狂猪”和“霍格”。

一个 $n$ 人概率游戏可以用一个 $2n$ 部图 $G = (U_1, \ldots, U_n, V_1, \ldots, V_n, E)$ 表示,其中 $U_i$ 对应第 $i$ 个玩家的随机事件,$V_i$ 对应第 $i$ 个玩家的确定性事件,$E = (\bigcup_{i = 1}^{n}(U_i\times V_i))\cup(\bigcup_{i = 1}^{n} V_i\times\bigcup_{i = 1}^{n} U_i)$。在一些游戏(如《止不住》)中,图表示是循环的,这给设计自下而上的逆向算法带来了困难。

2. 概率游戏的抽象

我们使用游戏图 $G = (U_1, \ldots, U_n, V_1, \ldots, V_n, E)$ 来表示一个 $n$ 人概率游戏($n \geq 2$),第 $i$ 个玩家的掷骰子位置和移动位置分别在 $U_i$ 和 $V_i$ 中。每个位置 $u$ 都与一个得分向量 $f(u) = (f_1(u), \ldot

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值