技术背景介绍
Neo4j是一款开源图数据库,近年来集成了向量相似性搜索的支持。利用Neo4j的向量索引(Neo4jVector),开发者可以进行近似最近邻搜索、欧几里得相似性、余弦相似性以及结合关键词的混合搜索。这为基于图数据库的应用场景开启了新的可能性。
核心原理解析
Neo4j Vector Index的核心在于将文本数据转化为高维向量,并利用这些向量进行各种类型的相似性计算。这种机制不仅支持多种相似性算法,还允许混合向量和关键词进行检索,以提供更加灵活和精确的搜索能力。
代码实现演示(重点)
以下是如何使用Neo4j Vector Index进行向量相似性搜索的详细代码示例。
import os
import getpass
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Neo4jVector
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
# 获取OpenAI API密钥
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
# 加载文档
loader = TextLoader("../../how_to/state_of_the_union.txt")
documents = loader.load()
# 文本分割
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
# 创建OpenAI嵌入
embeddings = OpenAIEmbeddings()
# Neo4j数据库连接信息
url = "bolt://localhost:7687"
username = "neo4j"
password = "password"
# 从文档中创建Neo4j向量索引
db = Neo4jVector.from_documents(
docs, OpenAIEmbeddings(), url=url, username=username, password=password
)
# 执行相似性搜索
query = "What did the president say about Ketanji Brown Jackson"
docs_with_score = db.similarity_search_with_score(query, k=2)
for doc, score in docs_with_score:
print("-" * 80)
print("Score: ", score)
print(doc.page_content)
print("-" * 80)
应用场景分析
向量相似性搜索在多个领域具有广泛的应用,包括:
- 推荐系统:根据用户历史行为进行相似产品推荐。
- 文档聚类:将相似主题的文档聚合在一起。
- 自然语言处理:用于文本嵌入和相似性计算,以支持复杂问答系统和聊天机器人。
实践建议
- 选择合适的相似性算法:根据具体需求选择欧几里得或余弦相似性。
- 合理设置参数:如文本分块大小、索引名称等,以便优化性能和结果准确性。
- 结合现有索引:在构建新索引前,考虑使用现有的索引和图谱结构提高效率。
如果遇到问题欢迎在评论区交流。
—END—