洛谷 P3905 道路重建

本文提供洛谷P3905道路重建问题的解决方案,通过图论算法,转换思路将完好的道路赋值为0,破坏的道路保持原值,运用最短路径算法快速恢复两重要城市间的交通。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

洛谷 P3905 道路重建

Description

  • 从前,在一个王国中,在nnn个城市间有mmm条道路连接,而且任意两个城市之间至多有一条道路直接相连。在经过一次严重的战争之后,有ddd条道路被破坏了。国王想要修复国家的道路系统,现在有两个重要城市AAA和BBB之间的交通中断,国王希望尽快的恢复两个城市之间的连接。你的任务就是修复一些道路使AAA与BBB之间的连接恢复,并要求修复的道路长度最小。

Input

  • 输入文件第一行为一个整数n(2<n≤100),表示城市的个数。这些城市编号从1到n。

    第二行为一个整数m,表示道路的数目。

    接下来的m行,每行3个整数i,j,k(1≤i,j≤n,i≠j,0<k≤100),表示城市i与j之间有一条长为k的道路相连。

    接下来一行为一个整数d(1≤d≤m),表示战后被破坏的道路的数目。在接下来的d行中,每行两个整数i和j,表示城市i与j之间直接相连的道路被破坏。

    最后一行为两个整数A和B,代表需要恢复交通的两个重要城市。

Output

  • 输出文件仅一个整数,表示恢复AAA与BBB间的交通需要修复的道路总长度的最小值。

Sample Input

3
2
1 2 1
2 3 2
1
1 2
1 3

Sample output

1

题解:

  • 比较容易的图论。
  • 需要转换一下思路。将完好的道路赋值为0,爆炸的道路为原来的值,跑一遍最短路即可
#include <iostream>
#include <cstdio>
#include <cstring>
#define maxn 105
using namespace std;

int n, m, d, a, b;
int dis[maxn][maxn], w[maxn][maxn];

int main()
{
    freopen("P3905.in", "r", stdin);
    freopen("P3905.out", "w", stdout);
    
    memset(dis, 0x3f, sizeof(dis));
    cin >> n >> m;
    for(int i = 1; i <= m; i++)
    {
        int u, v, wa;
        cin >> u >> v >> wa;
        w[u][v] = w[v][u] = wa;
        dis[u][v] = dis[v][u] = 0; //记得要给0 
    }
    cin >> d;
    for(int i = 1; i <= d; i++)
    {
        int u, v;   cin >> u >> v;
        dis[u][v] = dis[v][u] = w[u][v];
    }
    for(int k = 1; k <= n; k++)
        for(int i = 1; i <= n; i++)
            for(int j = 1; j <= n; j++)
                if(i != j && j != k && i != k)
                    dis[i][j] = min(dis[i][k] + dis[k][j], dis[i][j]);
    cin >> a >> b;
    cout << dis[a][b];
    return 0;
}

转载于:https://www.cnblogs.com/BigYellowDog/p/11169854.html

### 关于动态规划 (Dynamic Programming, DP) 的解决方案 在解决洛谷平台上的编程问题时,尤其是涉及动态规划的题目,可以采用以下方法来构建解决方案: #### 动态规划的核心思想 动态规划是种通过把原问题分解为相对简单的子问题的方式来求解复杂问题的方法。其核心在于存储重复计算的结果以减少冗余运算。通常情况下,动态规划适用于具有重叠子问题和最优子结构性质的问题。 对于动态规划问题,常见的思路包括定义状态、转移方程以及边界件的设计[^1]。 --- #### 题目分析与实现案例 ##### **P1421 小玉买文具** 此题是一个典型的简单模拟问题,可以通过循环结构轻松完成。以下是该问题的一个可能实现方式: ```cpp #include <iostream> using namespace std; int main() { int n; cin >> n; // 输入购买数量n double p, m, c; cin >> p >> m >> c; // 输入单价p,总金额m,优惠券c // 计算总价并判断是否满足件 if ((double)n * p <= m && (double)(n - 1) * p >= c) { cout << "Yes"; } else { cout << "No"; } return 0; } ``` 上述代码实现了基本逻辑:先读取输入数据,再根据给定约束件进行验证,并输出最终结果[^2]。 --- ##### **UOJ104 序列分割** 这是道经典的区动态规划问题。我们需要设计一个二维数组 `f[i][j]` 表示前 i 次操作后得到的最大价值,其中 j 是最后次切割的位置。具体实现如下所示: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 5e3 + 5; long long f[MAXN], sumv[MAXN]; int a[MAXN]; int main(){ ios::sync_with_stdio(false); cin.tie(0); int n,k; cin>>n>>k; for(int i=1;i<=n;i++)cin>>a[i]; for(int i=1;i<=n;i++)sumv[i]=sumv[i-1]+a[i]; memset(f,-0x3f,sizeof(f)); f[0]=0; for(int t=1;t<=k;t++){ vector<long long> g(n+1,LLONG_MIN); for(int l=t;l<=n;l++)g[l]=max(g[l-1],f[t-1][l-1]); for(int r=t;r<=n;r++)f[r]=max(f[r],g[r]+sumv[r]*t); } cout<<f[n]<<'\n'; return 0; } ``` 这段程序利用了滚动数组优化空复杂度,同时保持时效率不变[^3]。 --- ##### **其他常见问题** 针对更复杂的路径覆盖类问题(如 PXXXX),我们往往需要结合维或多维动态规划模型加以处理。例如,在某些场景下,我们可以设定 dp 数组记录到达某点所需最小代价或者最大收益等指标[^4]。 --- ### 总结 以上展示了如何运用动态规划技巧去应对不同类型的算法挑战。无论是基础还是高级应用场合,合理选取合适的数据结构配合清晰的状态转换关系都是成功解决问题的关键所在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值