scrapy_redis实现分布式爬虫

本文介绍如何使用Scrapy_redis实现分布式爬虫,包括分析代码、创建当当图书和亚马逊图书爬虫的具体步骤。掌握RedisSpider和RedisCrawlSpider的用法,以及在settings.py中的配置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目标

  1. 掌握scrapy_redis实现分布式爬虫的方法
  2. 掌握scrapy_redis中crawlspider类的分布式爬虫

1 RedisSpider

1.1 分析demo中代码

通过观察代码:

  • 继承自父类为RedisSpider
  • 增加了一个redis_key的键,没有start_urls,因为分布式中,如果每台电脑都请求一次start_url就会重复
  • 多了__init__方法,该方法不是必须的,可以手动指定allow_domains

1.2 动手实现当当图书爬虫

思路分析:

  1. 程序的入口

    当当图书中,从大分类入手,还有一个中间分类,以及小分类,小分类对一个的地址就是列表页的地址

    注意,url地址的响应和elements略微不同,其中不是每个大分类都在a标签中,中间部分分类不在span标签中

  2. 确定列表页的url地址和程序终止条件

    存在下一页

    不存在下一页

  3. 确定数据的位置

    数据都在url地址对应的响应中,包括列表

  4. 完善spider

    可以使用scrapy的方式创建爬虫,只需要把父类进行修改,添加redis_key

    同时在settings.py中进行配置

2 RedisCrawlSpider

2.1 分析demo中的代码

和scrapy中的crawlspider的区别在于,继承自的父类不想听,redis_key需要添加

2.2 动手完成亚马逊图书爬虫

思路分析:

  1. 确定rule中的规则

    可以通过连接提取器中的restrict_xpath来实现url地址的,不需要定位到具体的url地址字符串,定位到准确的标签位置即可

    注意:定位到的标签中不能包含不相关的url,否则请求不相关的地址后,数据提取会报错

    通过分析大分类和小分类的url地址,发现他们的规则仙童,即一个Rule可以实现从大分类到小分类的到列表页的过程

    1. 大分类url地址

    2. 小分类url地址

    3. 列表页翻页的url地址位置

    4. 进入详情页翻页的url地址位置

      详情页在h2标签的上一级,定位到h2后,通过..即可实现获取该url

  2. 详情页数据的抓取

    在详情页中,数据有两种,一种是电子书的信息,一种是纸质书的信息,两种页面,数据位置不同

    1. 确定书的分类,是电纸书还是纸质书

      电子书

      纸质书

    2. 不同类型的书籍分别写xpath,比如价格的提取

  3. 在settings中进行配置

### 分布式爬虫系统的架构设计方案 分布式爬虫是一种通过多节点协作的方式提升数据抓取效率的技术体系。其核心在于将任务分解并分配给多个计算单元执行,从而显著提高性能和可靠性。以下是关于分布式爬虫系统的设计方案及其流程图描述。 #### 1. 架构概述 分布式爬虫的核心目标是实现高效的任务分发与协调机制。通常情况下,该系统由以下几个主要模块组成[^2]: - **Scheduler (调度器)**: 负责管理 URL 队列,并将其分布到各个爬虫实例中。 - **Downloader (下载器)**: 执行具体的网页抓取操作。 - **Parser (解析器)**: 提取消息中的有用信息并将新链接返回至 Scheduler。 - **Storage (存储层)**: 存储最终提取的数据以及中间状态(如已访问过的 URL 列表)。 为了支持高并发性和容错能力,这些组件往往运行在一个共享数据库之上——例如 Redis 或者 MongoDB ——用于同步全局状态信息。 #### 2. 流程详解 ##### 请求初始化阶段 用户输入初始种子网址或者批量导入待处理的目标站点列表。随后,scheduler 将它们存入 redis 数据库作为起始点[^1]。 ##### 并行采集过程 每当某个 worker node 获取到一个新的 url 后便会发起 http 请求尝试加载相应页面内容;与此同时它也会把发现的新连接重新提交回公共池子里等待后续其他进程拾取继续探索下去形成闭环循环直至满足终止条件为止(比如达到最大深度限制)[^2]. ##### 结果保存环节 经过 parser 处理后的有效字段会被写入指定位置, 可能涉及的关系型/非关系型数据库取决于具体应用场景需求差异而定; 此外还需要考虑如何应对重复记录插入等问题以保障数据质量一致性.[^4] #### 3. 关键技术要点 - 使用消息队列来缓冲未完成的工作项,减少因网络波动带来的影响; - 实现去重逻辑防止无限递归陷入死循环现象发生; - 对异常情况进行妥善捕获反馈至上层管理者便于及时调整策略参数设置优化整体表现效果等等... 下面给出一张简化版的概念模型示意图形帮助理解: ``` +-------------------+ | User Input | +---------+--------+ | Seed URLs v +---------+--------+ | Scheduler | +---------+--------+ /|\ \ / | \ \ v v v v v +----+--+-----+-------+ | Downloader A | ... | Z| +-------------+------+--+ ^ ^ |Parsed Data | v v +----------+-----------+ | Parser Module | +----------+-----------+ | v +---------------+--------------+ | Storage Backend & Analytics | +----------------------------+ ``` 以上即为一个典型的分布式爬虫框架结构布局示意图[^5]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值