
思维链
文章平均质量分 86
澳鹏Appen
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
对抗性提示:进阶守护大语言模型
从核心来看,对抗性提示是精心设计输入以故意绕过或破坏人工智能安全机制的实践。这些并非普通笨拙的 “越狱” 尝试。如今的对抗性提示往往复杂、微妙且经过充分研究,它们利用心理学和语言学策略来诱使模型违反其对齐规则。与传统黑客攻击不同,这并非利用代码漏洞,而是利用语言 —— 这种使大型语言模型如此强大的交互界面。通过精心选择词语、语气或语境,用户可以让模型生成有害、有偏见或受限的内容,即使该模型已被明确训练为不生成此类内容。原创 2025-06-18 15:34:07 · 831 阅读 · 0 评论 -
澳鹏干货 | 基础模型选择指南:如何为生成式AI投资保驾护航?
在生成式AI (GenAI) 迅猛发展的今天,企业AI决策者正面临一个关键挑战:如何在纷繁复杂的基础模型 (Foundation Models) 中选择最适合自身业务的那一个?原创 2025-06-18 15:33:16 · 319 阅读 · 0 评论 -
干货分享 | 什么是大模型思维链?
这种方法非常适合对模型进行推理能力训练,因为三元对数据(问题,推理链,答案)构成的多组数据可以为模型复现推理链提供更多参考,更高效地提高模型的推理能力。最近的一项研究表明,Google Research 团队发现,思维链数据集训练后的模型,对小学数学的解决准确率达到了57%,远远高于用基础问题&答案数据集训练出来的模型(18%)。澳鹏为您的思维链训练提供全面的数据支持,包括微调数据集(即三元对数据,包含问题,推理链,答案),创建思维链提示,以及内容评分等,为您的模型推理能力提升进行闭环支持。原创 2024-12-30 17:12:57 · 1021 阅读 · 0 评论