Rust Web 后端开发实战:Actix + Diesel 构建高性能 API

Rust Web 后端开发实战:Actix + Diesel 构建高性能 API

《一条龙开发指南:MCP AI Agent 理论+项目实战开发你的MCP Server》

🧑‍💻 面试人物设定

  • 姓名: 徐子昂
  • 年龄: 32 岁
  • 学历: 计算机硕士
  • 工作年限: 7 年
  • 公司背景: 某头部金融科技平台
  • 技术栈: Rust, Actix, Diesel, PostgreSQL, JWT, Redis
  • 核心职责:
    • 使用 Rust 开发高并发后端服务
    • 利用 Actix 框架实现 Web 接口
    • 接入 Diesel 实现数据库访问
    • 使用 JWT 实现用户鉴权机制
  • 工作成果:
    • 成功上线多个交易接口模块,QPS 提升 60%
    • 将平均响应时间缩短至 80ms 内

🎤 第一轮面试:Rust Web 基础考察

面试官: “你好,请介绍一下你最近参与的 Rust 项目。”

程序员: “您好!我最近主要负责一个基于 Actix 和 Diesel 的用户管理服务重构项目,使用 JWT 实现身份验证,并接入 Redis 缓存高频查询结果,整体系统具备良好的性能与稳定性。”

面试官: “你能写一个简单的 Actix 路由吗?”

程序员: “当然可以,比如定义一个 GET 接口返回 JSON 数据。”

// main.rs
use actix_web::{web, App, HttpServer, Responder};

async fn greet(name: web::Path<String>) -> impl Responder {
    format!("Hello, {}!", name)
}

#[actix_web::main]
async fn main() -> std::io::Result<()> {
    HttpServer::new(|| {
        App::new()
            .route("/greet/{name}", web::get().to(greet))
    })
    .bind("127.0.0.1:8080")?
    .run()
    .await
}

🧠 第二轮面试:Diesel 数据库操作

面试官: “你是怎么使用 Diesel 的?”

程序员: “我们会使用 Diesel 定义数据模型,并进行数据库操作。”

# 创建迁移脚本
diesel migration generate --name create_users
-- up.sql
CREATE TABLE users (
    id SERIAL PRIMARY KEY,
    name VARCHAR NOT NULL,
    email VARCHAR UNIQUE NOT NULL,
    password_hash VARCHAR NOT NULL,
    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

-- down.sql
DROP TABLE users;
// models.rs
use serde::{Serialize, Deserialize};

#[derive(Serialize, Deserialize, Queryable)]
pub struct User {
    pub id: i32,
    pub name: String,
    pub email: String,
    pub created_at: chrono::NaiveDateTime,
}

#[derive(Insertable)]
#[table_name = "users"]
pub struct NewUser<'a> {
    pub name: &'a str,
    pub email: &'a str,
    pub password_hash: &'a str,
}
// handlers.rs
use actix_web::{web, HttpResponse};
use diesel::prelude::*;
use serde_json::json;

use crate::models::User;
use crate::schema::users;

pub async fn get_users(pool: web::Data<Pool<Connection = PgConnection>>) -> HttpResponse {
    let connection = pool.get().expect("Failed to get DB connection from pool");
    let results = web::block(move || {
        users::table.load::<User>(&connection)
    })
    .await
    .map_err(|e| {
        eprintln!("Error loading users: {}", e);
        HttpResponse::InternalServerError().finish()
    });

    match results {
        Ok(users) => HttpResponse::Ok().json(json!({ "users": users })),
        Err(e) => e,
    }
}

⚙️ 第三轮面试:JWT 用户认证

面试官: “你们是怎么实现用户认证的?”

程序员: “我们使用 jsonwebtoken 库实现 Token 签发与验证。”

// auth.rs
use jsonwebtoken::{encode, decode, Header, Validation};
use serde::{Deserialize, Serialize};

#[derive(Debug, Serialize, Deserialize)]
struct Claims {
    sub: String,
    exp: u64,
}

fn generate_token(user_id: &str) -> Result<String, jsonwebtoken::errors::Error> {
    let claims = Claims {
        sub: user_id.to_string(),
        exp: 10000000000, // 设置过期时间
    };

    encode(&Header::default(), &claims, b"secret_key")
}

fn verify_token(token: &str) -> Result<Claims, jsonwebtoken::errors::Error> {
    decode::<Claims>(token, b"secret_key", &Validation::default())
        .map(|data| data.claims)
}

📊 第四轮面试:Redis 缓存加速

面试官: “你是怎么使用 Redis 的?”

程序员: “我们使用 redis-rs 库实现缓存机制。”

// cache.rs
use redis::{Client, Commands};
use serde::{Serialize, Deserialize};

#[derive(Serialize, Deserialize, Debug)]
struct CachedUser {
    id: i32,
    name: String,
    email: String,
}

fn set_user_cache(client: &Client, user: &CachedUser) -> redis::RedisResult<()> {
    let key = format!("user:{}", user.id);
    let serialized = serde_json::to_string(user).unwrap();
    let mut con = client.get_connection().unwrap();
    con.set_ex(key, serialized, 3600) // 缓存 1 小时
}

fn get_user_cache(client: &Client, user_id: i32) -> Option<CachedUser> {
    let key = format!("user:{}", user_id);
    let mut con = client.get_connection().unwrap();
    let data: Option<String> = con.get(key).unwrap();
    data.and_then(|d| serde_json::from_str(&d).ok())
}

📈 第五轮面试:服务部署与监控

面试官: “你是怎么部署服务的?”

程序员: “我们主要使用 Docker 容器化部署,并结合 Prometheus + Grafana 实现可视化监控。”

# Dockerfile
FROM rust:latest as builder
WORKDIR /app
COPY . .
RUN cargo build --release

FROM debian:buster-slim
WORKDIR /app
COPY --from=builder /app/target/release/myserver ./
CMD ["./myserver"]

# 构建镜像
docker build -t rust-api-service:latest .

# 启动容器
docker run -d -p 8080:8080 --name rust-api rust-api-service:latest

💬 结尾环节

面试官: “今天的面试就到这里,我们会综合评估你的表现,后续 HR 会联系你。”

程序员: “谢谢您今天的时间,期待有机会加入贵公司。”

《一条龙开发指南:MCP AI Agent 理论+项目实战开发你的MCP Server》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值