题解:P3197 [HNOI2008] 越狱

题目传送门

题目

题目描述

监狱有 n n n 个房间,每个房间关押一个犯人,有 m m m 种宗教,每个犯人会信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱。

答案对 100 , 003 100,003 100,003 取模。

输入格式

输入只有一行两个整数,分别代表宗教数 m m m 和房间数 n n n

输出格式

输出一行一个整数代表答案。

输入输出样例 #1

输入 #1

2 3

输出 #1

6
说明/提示
样例输入输出 1 解释
状态编号1 号房间2 号房间3 号房间
1信仰 1信仰 1信仰 1
2信仰 1信仰 1信仰 2
3信仰 1信仰 2信仰 2
4信仰 2信仰 1信仰 1
5信仰 2信仰 2信仰 2
6信仰 2信仰 2信仰 1
数据规模与约定

对于 100 % 100\% 100% 的数据,保证 1 ≤ m ≤ 10 8 1 \le m \le 10^8 1m108 1 ≤ n ≤ 10 12 1 \le n \le 10^{12} 1n1012


问题重述

监狱有 n 个房间,每个房间关押一个犯人,有 m 种宗教,每个犯人会信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱。求有多少种状态可能发生越狱。答案对 100,003 取模。

输入格式

输入只有一行两个整数,分别代表宗教数 m 和房间数 n

输出格式

输出一行一个整数代表答案。

样例输入输出

输入:

2 3

输出:

6

解题思路

这个问题可以转化为计算所有可能的宗教分配方案中,至少有一对相邻房间宗教相同的方案数。直接计算这样的方案数比较复杂,可以采用补集的思想:

  1. 总方案数:每个房间有 m 种选择,所以总共有 m^n 种可能的宗教分配方案。
  2. 不发生越狱的方案数:即所有相邻房间的宗教都不相同。第一个房间有 m 种选择,第二个房间有 m-1 种选择(不能与第一个相同),第三个房间有 m-1 种选择(不能与第二个相同),以此类推。因此,不发生越狱的方案数为 m * (m-1)^(n-1)
  3. 发生越狱的方案数:总方案数减去不发生越狱的方案数,即 m^n - m * (m-1)^(n-1)

由于 nm 可能非常大(n 可以达到 10^12),我们需要使用快速幂算法来计算大数的幂次,并在计算过程中对 100,003 取模以避免数值溢出。

解决代码

#include <iostream>
using namespace std;

const int MOD = 100003;

// 快速幂算法,计算 (base^power) % MOD
long long fast_pow(long long base, long long power) {
    long long result = 1;
    while (power > 0) {
        if (power % 2 == 1) {
            result = (result * base) % MOD;
        }
        base = (base * base) % MOD;
        power /= 2;
    }
    return result;
}

int main() {
    long long m, n;
    cin >> m >> n;

    // 计算总方案数:m^n % MOD
    long long total = fast_pow(m, n);

    // 计算不发生越狱的方案数:m * (m-1)^(n-1) % MOD
    long long no_escape = (m % MOD) * fast_pow(m - 1, n - 1) % MOD;

    // 发生越狱的方案数:(total - no_escape + MOD) % MOD
    long long answer = (total - no_escape + MOD) % MOD;

    cout << answer << endl;
    return 0;
}

代码解释

  1. 快速幂函数 fast_pow:计算 base^power % MOD,使用分治策略将幂次分解为更小的部分,逐步计算,确保数值不会溢出且高效。
  2. 输入处理:读取宗教数 m 和房间数 n
  3. 计算总方案数m^n % MOD
  4. 计算不发生越狱的方案数m * (m-1)^(n-1) % MOD
  5. 计算发生越狱的方案数(总方案数 - 不发生越狱的方案数 + MOD) % MOD,其中 + MOD 是为了确保结果为非负数。
  6. 输出结果:打印发生越狱的方案数。

这种方法确保了我们能够高效且正确地处理大数运算,并满足题目要求的模运算条件。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值