题目
题目描述
监狱有 n n n 个房间,每个房间关押一个犯人,有 m m m 种宗教,每个犯人会信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱。
答案对 100 , 003 100,003 100,003 取模。
输入格式
输入只有一行两个整数,分别代表宗教数 m m m 和房间数 n n n。
输出格式
输出一行一个整数代表答案。
输入输出样例 #1
输入 #1
2 3
输出 #1
6
说明/提示
样例输入输出 1 解释
状态编号 | 1 号房间 | 2 号房间 | 3 号房间 |
---|---|---|---|
1 | 信仰 1 | 信仰 1 | 信仰 1 |
2 | 信仰 1 | 信仰 1 | 信仰 2 |
3 | 信仰 1 | 信仰 2 | 信仰 2 |
4 | 信仰 2 | 信仰 1 | 信仰 1 |
5 | 信仰 2 | 信仰 2 | 信仰 2 |
6 | 信仰 2 | 信仰 2 | 信仰 1 |
数据规模与约定
对于 100 % 100\% 100% 的数据,保证 1 ≤ m ≤ 10 8 1 \le m \le 10^8 1≤m≤108, 1 ≤ n ≤ 10 12 1 \le n \le 10^{12} 1≤n≤1012。
问题重述
监狱有 n
个房间,每个房间关押一个犯人,有 m
种宗教,每个犯人会信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱。求有多少种状态可能发生越狱。答案对 100,003
取模。
输入格式
输入只有一行两个整数,分别代表宗教数 m
和房间数 n
。
输出格式
输出一行一个整数代表答案。
样例输入输出
输入:
2 3
输出:
6
解题思路
这个问题可以转化为计算所有可能的宗教分配方案中,至少有一对相邻房间宗教相同的方案数。直接计算这样的方案数比较复杂,可以采用补集的思想:
- 总方案数:每个房间有
m
种选择,所以总共有m^n
种可能的宗教分配方案。 - 不发生越狱的方案数:即所有相邻房间的宗教都不相同。第一个房间有
m
种选择,第二个房间有m-1
种选择(不能与第一个相同),第三个房间有m-1
种选择(不能与第二个相同),以此类推。因此,不发生越狱的方案数为m * (m-1)^(n-1)
。 - 发生越狱的方案数:总方案数减去不发生越狱的方案数,即
m^n - m * (m-1)^(n-1)
。
由于 n
和 m
可能非常大(n
可以达到 10^12
),我们需要使用快速幂算法来计算大数的幂次,并在计算过程中对 100,003
取模以避免数值溢出。
解决代码
#include <iostream>
using namespace std;
const int MOD = 100003;
// 快速幂算法,计算 (base^power) % MOD
long long fast_pow(long long base, long long power) {
long long result = 1;
while (power > 0) {
if (power % 2 == 1) {
result = (result * base) % MOD;
}
base = (base * base) % MOD;
power /= 2;
}
return result;
}
int main() {
long long m, n;
cin >> m >> n;
// 计算总方案数:m^n % MOD
long long total = fast_pow(m, n);
// 计算不发生越狱的方案数:m * (m-1)^(n-1) % MOD
long long no_escape = (m % MOD) * fast_pow(m - 1, n - 1) % MOD;
// 发生越狱的方案数:(total - no_escape + MOD) % MOD
long long answer = (total - no_escape + MOD) % MOD;
cout << answer << endl;
return 0;
}
代码解释
- 快速幂函数
fast_pow
:计算base^power % MOD
,使用分治策略将幂次分解为更小的部分,逐步计算,确保数值不会溢出且高效。 - 输入处理:读取宗教数
m
和房间数n
。 - 计算总方案数:
m^n % MOD
。 - 计算不发生越狱的方案数:
m * (m-1)^(n-1) % MOD
。 - 计算发生越狱的方案数:
(总方案数 - 不发生越狱的方案数 + MOD) % MOD
,其中+ MOD
是为了确保结果为非负数。 - 输出结果:打印发生越狱的方案数。
这种方法确保了我们能够高效且正确地处理大数运算,并满足题目要求的模运算条件。