2.2 A*算法的核心思想
A*算法的核心思想是结合实际代价和启发式估计,以高效地搜索图形中的最优路径。通过在评估函数中权衡实际代价和启发式估计,A*算法能够在保证找到最优路径的同时,尽可能减小搜索的时间和空间开销。这使得A*算法成为解决路径规划问题的一种高效而灵活的算法。
2.2.1 A*算法的原理和实现步骤
A*算法的独特之处在于使用启发式估计来引导搜索,从而减少搜索空间,提高效率。A*算法的原理如下所示。
- 启发式搜索:A*算法是一种启发式搜索算法,利用启发式估计(heuristic estimation)来引导搜索过程。启发式函数h(n)用于估计从当前节点n到目标节点的代价。
- 综合实际代价和估计代价:A算法综合考虑两个代价:实际代价g(n),表示从起点到当前节点的实际路径代价,和估计代价h(n),表示从当前节点到目标节点的启发式估计路径代价。A使用评估函数f(n) = g(n) + h(n) 来确定搜索的优先级。
- 优先级队列:A*使用一个开放列表(Open List)来存储待考察的节点,按照评估函数f(n)值的优先级排列。在每一步中,选择开放列表中具有最小f(n)值的节点进行探索。
- 避免重复搜索:通过维护一个关闭列表(Closed List)来避免对已经考察过的节点进行重复搜索,确保算法不会陷入