小白教程:Unsloth 打造属于自己的中文版Llama3

在定制化业务场景中,如果利用专属数据集,经过微调的大模型能够在多种任务上与GPT-4媲美,并支持本地部署,保护隐私,同时还能降低运算成本。最新推出的Llama3,作为当前性能最强的开源基础大模型,非常适用于自然语言处理、机器翻译、文本生成、问答系统、聊天机器人等多种应用场景。

通过微调这一技术,基础大模型如Llama3即使原生不支持中文,也能增加对中文的支持。本教程将展示如何使用LooPIN提供的GPU算力,从零开始为大模型添加新的训练素材,拓展其在原有能力基础上的新可能性。

准备工作

本教程将指导你如何配置环境、准备数据、训练模型、部署模型及保存模型。在8G显存的显卡上微调只需不到2分钟,且微调后的模型能被量化为4bit,在CPU上本地进行流畅的聊天推理。

我们将使用以下开源代码库:

Unsloth开源微调LLM工具

Unsloth: Github地址 - Unsloth GitHub

Unsloth是一款集成的模型微调工具。使用Unsloth微调Mistral、Gemma、Llama时,速度可提高2-5倍,内存使用可减少70%!

中文指令数据集

尽管LLM在中文指令调优方面还有不少进步空间,现有的数据集要么以英语为主,要么不适合现实中的中国用户交互模式。

为解决这一问题,由10家机构联合发布的研究提出了COIG-CQIA(全称Chinese Open Instruction Generalist - Quality Is All You Need),这是一个高质量的中文指令调优数据集。数据来源包括问答社区、维基百科、考试题目和现有的NLP数据集,经过了严格的过滤和处理。

我们将使用其中的8000条来自百度贴吧的弱智吧数据进行微调:

ruozhiba-llama3-tt

开始模型训练

配置GPU实例

请访问以下页面,获得详细的交互式指导: LooPIN流动性池

1. LooPIN流动性池:

前往LooPIN的流动性池( LooPIN Network Pool),使用$LOOPIN代币购买GPU时间。以RTX 3080 GPU为例,根据自身需求和预算,在 GPU UserBenchmark 中选择合适的GPU型号。

2. 代币兑换GPU资源:

  • 选择所需的$LOOPIN代币数量。
  • 通过滑块选择GPU数量。
  • 确认兑换量并完成交易。

3. 进入Jupyter Notebook:

交易成功后,进入Rented Servers下的Server区域,通过你的远程服务器访问Jupyter Notebook。通常,实例启动需要2-4分钟。

4. 用nvidia-smi验证GPU:

在Jupyter Notebook中,打开新的终端窗口,运行nvidia-smi命令,检查GPU是否已激活。

复制

+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.54.15              Driver Version: 550.54.15      CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 3080        Off |   00000000:01:00.0 Off |                  N/A |
|  0%   39C    P8             21W /  350W |      12MiB /  12288MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|==============================================
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LuckyTHP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值