验证码(CAPTCHA)作为一种防止自动化攻击的技术,已经被广泛应用于网站中。它通常要求用户输入图像中的扭曲文字或识别图形内容,以证明其为人类而非机器人。虽然它的目的是为了阻止机器人的访问,但我们可以通过技术手段自动化识别这些验证码。本文将介绍如何使用 Python 和 Tesseract OCR 引擎来识别和提取验证码中的文本。
1. 环境准备
安装 Python 和所需库
首先,确保你的计算机上已安装 Python。你可以访问 Python 官网 下载并安装 Python。
接着,我们需要安装一些常用的库:
pytesseract:这是 Python 的 Tesseract OCR 接口,用来调用 Tesseract 引擎进行文字识别。
Pillow:Python 的图像处理库,常用于加载、修改和保存图像。
opencv-python:强大的计算机视觉库,提供了许多图像处理和计算机视觉功能。
你可以通过以下命令安装这些库:
bash
更多内容访问ttocr.com或联系1436423940
pip install pytesseract pillow opencv-python
安装 Tesseract OCR 引擎
Tesseract 是一个开源的 OCR 引擎,用于从图像中提取文本。你需要根据你的操作系统安装 Tesseract。
Linux:
bash
sudo apt install tesseract-ocr
macOS(使用 Homebrew):
brew install tesseract
Windows: 下载并安装适用于 Windows 的 Tesseract,安装包可从 Tesseract GitHub 页面 获取。安装后,你需要将 Tesseract 的路径添加到环境变量中。
安装完成后,你可以运行以下命令确认 Tesseract 是否正确安装:
bash
tesseract --version
2. 编写验证码识别代码
在安装好相关库和工