sigmoid、tanh和ReLU

本文深入探讨了常用激活函数sigmoid、tanh和ReLU的特点。sigmoid函数在两端饱和导致梯度消失,影响训练;tanh是对sigmoid的改进,范围在[-1,1];ReLU函数线性、计算效率高,深层网络优势显著。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

sigmoid的缺点:

1.神经元接近0或1时会饱和,导致梯度消失。

2.sigmoid取值范围[0,1],不是0中心的。影响反向传播时梯度下降的运作,梯度要么正数要么负数,权重更新Z字型下降,不过算是个小问题。

tanh是一个简单放大的sigmoid神经元,取值范围[-1, 1]

ReLU函数,公式为f(x) = max(0, x)

优点:

1.线性,收敛速度快。

2.不含指数运算等,节约计算资源。

 

层数越深,ReLU相对sigmoid和tanh的优势越明显

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值