整数二次多维背包问题的深入探讨
1. 引言
整数二次多维背包问题(Integer Quadratic Multi-dimensional Knapsack Problem, IQMKP)是一种经典的组合优化问题,在实际应用中有着广泛的用途。这类问题不仅在理论上具有挑战性,而且在实践中有许多重要的应用场景,如资源分配、资本预算、投资组合选择等。本文将深入探讨IQMKP的定义、现有研究进展、解决方案以及性能评估等方面,帮助读者全面理解这一重要课题。
2. 问题定义
IQMKP的形式化表述如下:
给定一组物品 ( j ),每个物品 ( j ) 有一个非负的权重 ( c_j ),一个二次项 ( d_j ),多个约束条件 ( a_{ij} ),以及对应的约束上限 ( b_i )。每个变量 ( x_j ) 都是一个整数,其上下界为整数 ( u_j )。目标是最大化一个带有二次项的目标函数,同时满足多个线性约束条件。具体表述为:
[ \text{maximize} \quad \sum_{j=1}^{n} c_j x_j + \sum_{j=1}^{n} d_j x_j^2 ]
[ \text{subject to} \quad \sum_{j=1}^{n} a_{ij} x_j \leq b_i, \quad i = 1, 2, …, m ]
[ 0 \leq x_j \leq u_j, \quad j = 1, 2, …, n ]
其中,系数 ( c_j ), ( d_j ), ( a_{ij} ), ( b_i ) 都是非负的。变量 ( x_j ) 的上下界 ( u_j ) 是整数,且目标函数是可分离的凹