对很多企业来说,把大模型留在本地机房,并不是为了赶时髦,而是被现实逼出来的“刚需”。把大模型搬到本地,既能用公司多年沉淀的私域数据做定向微调,让 AI 真正理解自家业务、说出行内人认可的答案,又能在拔掉网线后依旧稳定运行,彻底把数据、模型和算力都锁在机房里,实现“离线也能用、调优更精准、安全无外流”的闭环。
虽然目前满血跑大模型的硬件要求通常在百万级别,算力仍旧是企业大模型应用的瓶颈,但通过一些蒸馏技术的应用,也有很多企业开始尝试大模型的本地化应用。大模型的算力成本逐步下降,可以预见,未来大模型的本地化部署一定是各个企业的刚需。本文就以CentOS7的环境,以一个4核8G内存的云服务器,部署最基础版的DeepSeek R1 1.5b模型作为演示。
Ollama部署
1、首先检查系统架构
uname -m
2、下载Ollama与安装
根据自己的系统架构,在系统的/usr目录下,下载安装Ollama
curl -fsSL https://ollama.ac.cn/install.sh | sh
鉴于国内服务器下载速度较慢,所以下载好Ollama安装包后,上传到服务器再安装。
https://github.com/ollama/ollama/releases/
在github下载自己合适的版本,然后再进行安装。
这块百度到了一个网盘下载地址:
https://pan.baidu.com/s/1e9Tke5t-x5YIw1iuPvBb5Q?pwd=wcba
将下载好的文件上传到/usr/ollama路径下,使用解压命令安装。
tar -C /usr/ollama -xzf ollama-linux-amd64.tgz
稍等片刻,解压完毕后,检查安装版本。
/usr/ollama/bin/ollama -v
3、创建服务文件
创建一个服务文件/etc/systemd/system/ollama.service,文件中内容如下:
[Unit]
Description=Ollama Service
After=network-online.target
[Service]
Environment="OLLAMA_HOST=0.0.0.0:11434"
ExecStart=/usr/ollama/bin/ollama serve
User=root
Group=root
Restart=always
RestartSec=3
[Install]
WantedBy=default.target
这块本文使用Xshell自带的Xftp进行操作,先建好文件,上传到指定位置。
注意ollama.service的ollama可执行文件位置,要按照自己的去写,见下图红色方框内容,需要自定义
4、启动Ollama服务
让服务生效,然后启动Ollama。
systemctl daemon-reload
systemctl enable ollama
systemctl start ollama
这时候,再输入如下命令:
ollama -v
便会成功出现版本信息,不再报错。
大模型部署
1、大模型选择
可以到如下地址,选择大模型下载:
https://ollama.com/library/deepseek-r1
本文使用1.5b模型,便可以使用命令:
/usr/ollama/bin/ollama run deepseek-r1:1.5b
至此安装成功,便可以在Xshell页面尝试与大模型进行对话。
Dify集成
由于服务器已经部署了Dify,这块就直接集成Dify,使Dify可以直接调用本机部署的DeepSeek进行工作。具体Dify部署,见文章:CentOS7 + Docker 部署 Dify 超详细图文教程,助力企业Agent应用上线
首先在Dify页面右上角选择“设置”。
在设置中,找到模型供应商-Ollama
安装插件:
安装完成后,刷新,在设置中就会有待配置的Ollama插件。
然后进行配置的填写。
填写后保存,点击工作室,创建空白应用。
这块为了快速上手,选择新手适用-聊天助手。
创建完成之后,在右上角选择添加好的DeepSeek R1模型:
至此,大模型已经部署完毕,且集成到Dify,可以本地化使用我们的DeepSeek大模型了。