[NOIP2013 提高组] 华容道 P1979 洛谷
强烈推荐,更好的阅读体验
经典题目:spfa+bfs+转化
题目大意:
给出一个01网格图,和点坐标x,y空格坐标a,b,目标位置tx,ty要求移动空格最少步数使点到tx,ty
本题关键:
我们可以发现本题可以用BFS获得很高的暴力分,但是也可以使用DP:
f
[
i
]
[
j
]
[
x
]
[
y
]
表
示
空
格
在
i
,
j
目
标
点
在
x
,
y
的
最
少
操
作
次
数
f[i][j][x][y]表示空格在i,j目标点在x,y的最少操作次数
f[i][j][x][y]表示空格在i,j目标点在x,y的最少操作次数
但是本题的多次询问给我们一个启发–>可以预处理
所有我们可能可以预先处理一些状态的转移
可以发现很多状态是无效的,对于一个正确的移动路径:一定由两个部分组成
1.空格移动到目标格附近–>2.目标格借助空格移动到终点
对于前者很容易独立求出,对于后者,我们单独优化
目标点与空格的位置合并为一个状态,容易发现这个状态是4维的,空间卡住,时间__了
优化状态:
f
[
i
]
[
j
]
[
0
/
1
/
2
/
3
]
表
示
目
标
点
x
=
i
,
y
=
j
,
空
格
在
其
上
下
左
右
的
相
邻
位
置
的
状
态
f[i][j][0/1/2/3]表示目标点x=i,y=j,空格在其上下左右的相邻位置的状态
f[i][j][0/1/2/3]表示目标点x=i,y=j,空格在其上下左右的相邻位置的状态
为什么可以这样定义:因为在目标格借助空格移动到终点的过程中
假设目标点是下图黄球,空格只能是蓝球不能是绿球
不需要怎么了
状态之间的联系:
相邻状态:黄球位置确定下的所有蓝球位置(有效<=4)
所有对于一个状态考虑的转移左右3+1个
另外一个是空格目标交换位置(下图两种情况)
下面就可以上代码了
//先看主函数
#include<bits/stdc++.h>
#define ll int
#define f(i,a,b) for(ll i=a;i<=b;i++)
#define fd(i,a,b) for(ll i=a;i>=b;i--)
#define il inline
#define gc getchar()
#define r(i,a) for(ll i=fir[a];i;i=e[i].nex)
const ll maxn=32,INF=1e9,half=10,maxm=1e5;
ll n,m,q;
using namespace std;
bool Map[maxn][maxn];
ll xa[10]={-1,0,1, 0,0,0,0};
ll ya[10]={0, 1,0,-1,0,0,0};
//下 左→ ←
ll f[maxn][maxn][half],cnt;
ll dis[maxn][maxn],fir[maxm];
//把所有数组定义提前,以免重复或re
struct edge{ll to,nex,w;}e[maxm<<1];
il void add(ll a,ll b,ll c){e[++cnt].to=b,e[cnt].nex=fir[a],e[cnt].w=c;fir[a]=cnt;}
//↑用于spfa的建边,在dfs中建边
ll getnum(ll x,ll y){return ((x-1)*(m)+y)<<2;}
//对于每个空格与目标个相邻的状态进行编号
ll fat(ll x){return (x+2)%4;}
//空格相对于目标格的位置下上右左-->上下左→
queue<pair<ll,ll> >que;
//记录空格在s的d方位
il void bfs(ll a,ll b,ll x,ll y,ll d){//重复使用bfs
//a,b是枚举格子,x,y是空格
memset(dis,-1,sizeof(dis));
dis[a][b]=1;//防止被加入队列
dis[x][y]=0;
que.push(make_pair(x,y));
while(!que.empty()){
ll ux=que.front().first,uy=que.front().second;
que.pop();
f(i,0,3){
ll vx=ux+xa[i],vy=uy+ya[i];
if(Map[vx][vy]&&dis[vx][vy]==-1){
que.push(make_pair(vx,vy));
dis[vx][vy]=dis[ux][uy]+1;
}
}
}
if(d==5) return;//用于每次处理最少空格单独行走步数
ll num=getnum(a,b);
f(i,0,3){
ll vx=a+xa[i],vy=b+ya[i];
if(dis[vx][vy]>0)
//状态连边
add(num+d,num+i,dis[vx][vy]);
}
//交换位置,getnum表示相对位置取反
add(num+d,getnum(x,y)+fat(d),1);
}
ll far[maxm];
bool vis[maxm];
queue<ll> Q;
il void spfa(ll sx,ll sy){//基本的spfa
memset(far,-1,sizeof(far));//mem-1可以相当于赋值
ll num=getnum(sx,sy);
f(i,0,3){
ll vx=sx+xa[i],vy=sy+ya[i];
if(dis[vx][vy]!=-1){
far[num+i]=dis[vx][vy];
Q.push(num+i);
}
}
//↑压入起始状态(<=4种)
while(!Q.empty()){
ll u=Q.front();
Q.pop();
vis[u]=0;
r(i,u){
ll v=e[i].to;
if(far[v]>far[u]+e[i].w||far[v]==-1){
far[v]=far[u]+e[i].w;
if(!vis[v]){
Q.push(v);
vis[v]=1;
}
}
}
}
}
int main()
{
cin>>n>>m>>q;
f(i,1,n) f(j,1,m) cin>>Map[i][j];
f(i,1,n){
f(j,1,m){
if(!Map[i][j]) continue;
f(o,0,3){
//处理每相邻状态的空格移动的最小步数
//包括目标点不动空格动(<=3种),目标空格交换位置(1种)
ll x=i+xa[o],y=j+ya[o];
if(Map[x][y]) bfs(i,j,x,y,o);
}
}
}
ll sx,sy,ex,ey,tx,ty,ans;
while(q--){
ans=INF;
cin>>ex>>ey>>sx>>sy>>tx>>ty;
if(sx==tx&&sy==ty){cout<<0<<endl;continue;}
bfs(sx,sy,ex,ey,5);
//借用bfs求出空格独立行走最短路
spfa(sx,sy);
ll num=getnum(tx,ty);
f(i,0,3)
if(far[num+i]!=-1) ans=min(ans,far[num+i]);
cout<<((ans==INF)?-1:ans)<<endl;
}
}