30、使用CNN破解验证码与微笑检测实践

使用CNN破解验证码与微笑检测实践

1. 使用CNN破解验证码

1.1 训练验证码破解模型

在定义好预处理函数后,我们可以开始在图像验证码数据集上训练LeNet模型。以下是具体步骤:

1.1.1 导入必要的包

打开 train_model.py 文件,插入以下代码:

# import the necessary packages
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from keras.preprocessing.image import img_to_array
from keras.optimizers import SGD
from pyimagesearch.nn.conv import LeNet
from pyimagesearch.utils.captchahelper import preprocess
from imutils import paths
import matplotlib.pyplot as plt
import numpy as np
import argparse
import cv2
import os

以上代码导入了我们所需的Python包,我们将使用SGD优化器和LeNet架构在数字数据集上训练模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值