弹药筒图像特征提取与分类及图像多阈值分割算法研究
1. 弹药筒图像特征提取与分类
在弹药筒图像的特征提取与分类研究中,主要涉及到多种算法的应用和实验验证。
1.1 算法介绍
- 启发式技术 :包括改变学习率、隐藏神经元数量以及引入动量等方法。
- 标准数值优化技术 :如共轭梯度算法。
在基本的BP神经网络(BP NN)算法中,学习率在整个训练过程中保持不变。然而,算法性能对学习率的设置非常敏感。若学习率过高,算法会出现振荡且不稳定;若学习率过小,算法收敛时间会过长,且在训练前很难确定最优值。实际上,在误差平面较平坦时增大学习率,斜率增大时减小学习率,可加快收敛速度。
动量类似于低通滤波器,能减少轨迹中的振荡或使振荡平滑,不仅能维持算法稳定性,还能加速收敛,因为轨迹会朝着一致的方向移动。基本的反向传播算法沿最陡下降方向(梯度的负方向)调整权重,但这可能并非最快的收敛方式,而共轭梯度算法通过沿共轭方向搜索,通常能比最陡下降法更快收敛。
1.2 实验过程
- 样本选择 :由西澳大利亚警方提供样本弹药筒,选取了八种不同类型的五十个弹药筒进行实验,所有弹药筒图像均使用单波长环形光拍摄。
- 特征生成 :将纹理特征和圆矩不变量相结合,生成新的特征集,用于训练、验证和测试神经网络。
- 交叉验证 :使用“留一法”交叉验证(LOO